留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制桥墩体系抗震性能研究进展:新材料、新理念、新应用

王景全 王震 高玉峰 诸钧政

王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
引用本文: 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
WANG Jing-quan, WANG Zhen, GAO Yu-feng, ZHU Jun-zheng. REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION[J]. Engineering Mechanics, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
Citation: WANG Jing-quan, WANG Zhen, GAO Yu-feng, ZHU Jun-zheng. REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION[J]. Engineering Mechanics, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03

预制桥墩体系抗震性能研究进展:新材料、新理念、新应用

doi: 10.6052/j.issn.1000-4750.2018.10.ST03
基金项目: 国家自然科学基金项目(51438003);中国铁路总公司科技研究开发计划重大课题项目(2017G006-C);东南大学优秀博士学位论文培育基金项目(YBPY1707);江苏高校优势学科建设工程资助项目(CE02-1-4)
详细信息
    作者简介:

    王震(1990-),男,山东菏泽人,博士生,主要从事新材料在装配式结构中应用的研究(E-mail:sdkj199017@163.com);高玉峰(1966-),男,安徽滁州人,教授,博士,院长,主要从事岩土工程的研究(E-mail:yfgao66@163.com);诸钧政(1993-),男,浙江温州人,硕士生,主要新材料在装配式结构中应用的研究(E-mail:446961836@qq.com)

    通讯作者: 王景全(1976-),男,河南南阳人,教授,博士,院长,主要从事桥梁抗震、新材料应用的研究(E-mail:wangjingquan@seu.edu.cn).
  • 中图分类号: TU375;U443.22

REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION

  • 摘要: 预制桥墩体系具有快速施工优势,在非震区、低烈度区中已得到较广泛应用,但因对其抗震性能缺乏充分认识,导致预制桥墩体系在中高烈度区的应用受到限制。该文根据抗震性能的不同,将预制桥墩体系分为“等同现浇”和“非等同现浇”两类,其中“等同现浇”预制桥墩又按照连接形式的不同分为套筒灌浆连接、波纹管灌浆连接、预留槽孔的灌浆连接、承插式连接、现浇湿接缝连接;“非等同现浇”预制桥墩按照有无专门耗能装置可分为两类;系统梳理了每种类型预制桥墩抗震性能的研究现状及典型工程应用。该文重点报道了超高性能混凝土、纤维增强复合材料和形状记忆合金3种高性能材料用于提高预制桥墩抗震性能的研究现状,指出了3种高性能材料用于预制桥墩体系中的合理方式。该文总结出将韧性抗震理念融入预制桥墩体系的两种方法:外置可更换耗能装置和内置机械连接的耗能钢筋,并对采用这两种方法的预制桥墩抗震性能研究现状进行了介绍。基于对预制桥墩体系抗震性能研究成果的整理,作者介绍了预制桥墩体系在更高抗震需求、更高刚度需求、更高使用寿命需求、更高环境保护需求4类桥梁中的应用前景,并指出了这些新应用可能带来的新课题。
  • [1] Ericson A C. Emulation design of precast concrete[J]. The Construction Specifier, 1994, 47(10):96-103.
    [2] Kurama Y C, Sritharan S, Fleischman R B, et al. Seismic-resistant precast concrete structures:state of the art[J]. Journal of Structural Engineering, 2018, 144(4):03118001.
    [3] Marsh M L, Wernli M, Garrett B E, et al. Application of accelerated bridge construction connections in moderate-to-high seismic regions[R]. Washington:Transportation Research Board, 2011.
    [4] Haber Z B, Saiidi M S, Sanders D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111(3):639-650.
    [5] Ameli M J, Parks J E, Brown D N, et al. Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction[J]. PCI Journal, 2015, 60(2):80-103.
    [6] Li T, Qu H, Wang Z, et al. Seismic performance of precast concrete bridge columns with quasi-static cyclic shear test for high seismic zones[J]. Engineering Structures, 2018, 166:441-453.
    [7] Ameli M J, Brown D N, Parks J E, et al. Seismic column-to-footing connections using grouted splice sleeves[J]. ACI Structural Journal, 2016, 113(5):1021-1030.
    [8] Haber Z B, Mackie K R, Al-Jelawy H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging[J]. Journal of Bridge Engineering, 2017, 22(10):04017078.
    [9] Ameli M J, Pantelides C P. Seismic analysis of precast concrete bridge columns connected with grouted splice sleeve connectors[J]. Journal of Structural Engineering, 2016, 143(2):04016176.
    [10] Haber Z B, Saiidi M S, Sanders D H. Behavior and simplified modeling of mechanical reinforcing bar splices[J]. ACI Structural Journal, 2015, 112(2):179-188.
    [11] Qu H, Li T, Wang Z, et al. Investigation and verification on seismic behavior of precast concrete frame piers used in real bridge structures:Experimental and numerical study[J]. Engineering Structures, 2018, 154:1-9.
    [12] Culmo M P. Connection details for prefabricated bridge elements and systems[R]. Washington:Federal Highway Administration, 2009.
    [13] Littleton P, Mallela J. Iowa demonstration project:accelerated bridge construction on US 6 over keg creek[R]. Washington:Federal Highway Administration, 2013.
    [14] Brenes F J. Anchorage of grouted vertical duct connections for precast bent caps[D]. Austin:The University of Texas at Austin, 2005.
    [15] Khaleghi B, Schultz E, Seguirant S, et al. Accelerated bridge construction in Washington State:From research to practice[J]. PCI Journal, 2012, 57(4):34-49.
    [16] Restrepo J L. Seismic behavior of connections between precast concrete elements[D]. Christchurch:Department of Civil Engineering, University of Canterbury, 1992.
    [17] Darwin D and Zavaregh S S. Bond strength of grouted reinforcing bar[J]. ACI Structural Journal, 1996, 93(4):486-495.
    [18] Raynor D J, Lehman D E, Stanton J F. Bond-slip response of reinforcing bars grouted in ducts[J]. ACI Structural Journal, 2002, 99(5):568-576.
    [19] Brenes F J, Wood S L, Kreger M E. Anchorage requirements for grouted vertical-duct connectors in precast bent cap systems[R]. Austin:Center for Transportation Research, University of Texas at Austin, 2006.
    [20] Matsumoto E E, Waggoner M C, Kreger M E, et al. Development of a precast concrete bent-cap system[J]. PCI Journal, 2008, 53(3):74-99.
    [21] Steuck K P, Eberhard M O, Stanton J F. Anchorage of large-diameter reinforcing bars in ducts[J]. ACI Structural Journal, 2009, 106(4):506-513.
    [22] Pang J B K, Eberhard M O, Stanton J F. Large-bar connection for precast bridge bents in seismic regions[J]. Journal of Bridge Engineering, 2009, 15(3):231-239.
    [23] Matsumoto E. Emulative precast bent cap connections for seismic regions:component tests report-preliminary[R]. Sacramento:Califormia State University, 2010.
    [24] Mashal M, White S, Palermo A. Quasi-static cyclic tests of emulative precast segmental bridge piers (E-PSBP)[C]//Proceedings of the 2013 NZSEE conference, Wellington, New Zealand, New Zealand Society for Earthquake Engineering, 2013.
    [25] 宋年华. 灌浆波纹管连接预制拼装RC桥墩-承台节点抗震性能[D]. 北京:北京工业大学, 2016. Song Nianhua. Seismic performance of precast assembly RC bridge pier columns-pile cap joints based on grouted corrugated duct connection[D]. Beijing:Beijing University of Technology, 2016. (in Chinese)
    [26] 王志强, 卫张震, 魏红一, 等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报, 2017, 30(5):74-80. Wang Zhiqiang, Wei Zhangzhen, Wei Hongyi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway Transport, 2017, 30(5):74-80. (in Chinese)
    [27] Matsumoto E E. Emulative precast bent cap connections for seismic regions:component tests-cap pocket full ductility specimen (unit 3)[R]. Sacramento:California State University, 2009.
    [28] Osanai Y, Watanabe F, Okamoto S. Stress transfer mechanism of socket base connections with precast concrete columns[J]. ACI Structural Journal, 1996, 93(3):266-276.
    [29] Canha R M F, Campos G M, El Debs M K. Design model and recommendations of column-foundation connection through socket with rough interfaces[J]. Revista IBRACON de Estruturas e Materiais, 2012, 5(2):182-218.
    [30] Campos G M, Canha R M F, El Debs M K. Design of precast columns bases embedded in socket foundations with smooth interfaces[J]. Revista IBRACON de Estruturas e Materiais, 2011, 4(2):304-323.
    [31] White S, Palermo A. Quasi-static testing of posttensioned nonemulative column-footing connections for bridge piers[J]. Journal of Bridge Engineering, 2016, 21(6):04016025.
    [32] Haraldsson O S, Janes T M, Eberhard M O, et al. Seismic resistance of socket connection between footing and precast column[J]. Journal of Bridge Engineering, 2013, 18(9):910-919.
    [33] Kim D H, Kim M K, Zi G, et al. Experimental test and seismic performance of partial precast concrete segmental bridge column with cast-in-place base[J]. Engineering Structures, 2015, 100:178-188.
    [34] Billington S L, Barnes R W, Breen J E. A precast segmental substructure system for standard bridges[J]. PCI Journal, 1999, 44(4):56-73.
    [35] Billington S L, Barnes R W, Breen J E. Alternate substructure systems for standard highway bridges[J]. Journal of Bridge Engineering, 2001, 6(2):87-94.
    [36] Ou Y C. Precast segmental post-tensioned concrete bridge columns for seismic regions[D]. San Diego:University of California at San Diego, 2002.
    [37] Hewes J T, Priestley M J N. Seismic design and performance of precast concrete segmental bridge columns[R]. San Diego:University of California at San Diego, 2002.
    [38] Yamashita R, Sanders D H. Seismic performance of precast unbonded prestressed concrete columns[J]. ACI Structural Journal, 2009, 106(6):821-830.
    [39] 葛继平, 闫兴非, 王志强. 2段式预制拼装预应力混凝土桥墩的抗震性能[J]. 铁道科学与工程学报, 2017, 14(11):2390-2398. Ge Jiping, Yan Xingfei, Wang Zhiqiang. Seismic performance analysis of two-segment bridge columns with prestressing bars[J]. Journal of Railway Science and Engineering, 2017, 14(11):2390-2398. (in Chinese)
    [40] 贾俊峰, 赵建瑜, 张强, 等. 后张预应力节段拼装CFST桥墩抗侧力学行为试验[J]. 中国公路学报, 2017, 30(3):236-245. Jia Junfeng, Zhao Jianyu, Zhang Qiang, et al. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns[J]. China Journal of Highway and Transport, 2017, 30(3):236-245. (in Chinese)
    [41] Ou Y C, Wang P H, Tsai M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of Structural Engineering, 2009, 136(3):255-264.
    [42] Wang J C, Ou Y C, Chang K C, et al. Large-scale seismic tests of tall concrete bridge columns with precast segmental construction[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(12):1449-1465.
    [43] 葛继平, 王志强. 干接缝节段拼装桥墩振动台试验研究[J]. 工程力学, 2011, 28(9):122-128. Ge Jiping, Wang Zhiqiang. Shake table tests of segmental bridge columns with match-cast dry joints[J]. Engineering Mechanics, 2011, 28(9):122-128. (in Chinese)
    [44] 高婧, 葛继平, 林铁良. 干接缝节段拼装桥墩拟静力试验研究[J]. 振动与冲击, 2011, 30(4):211-216. Gao Jing, Ge Jiping, Lin Tieliang. Pseudo static test for pre-cast segmental bridge columns with dry joints[J]. Journal of Vibration and shock, 2011, 30(4):211-216. (in Chinese)
    [45] 王军文, 张伟光, 艾庆华. PC与RC空心墩抗震性能试验对比[J]. 中国公路学报, 2015, 28(4):76-85. Wang Junwen, Zhang Weiguang, Ai Qinghua. Comparative experiment on seismic performance of PC and RC hollow piers[J]. China Journal of Highway and Transport, 2015, 28(4):76-85. (in Chinese)
    [46] Bu Z Y, Ou Y C, Song J W, et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section[J]. Journal of Bridge Engineering, 2015, 21(2):04015043.
    [47] Hung H H, Sung Y C, Lin K C, et al. Experimental study and numerical simulation of precast segmental bridge columns with semi-rigid connections[J]. Engineering Structures, 2017, 136:12-25.
    [48] Cai Z K, Wang Z, Yang T Y. Experimental testing and modeling of precast segmental bridge columns with hybrid normal-and high-strength steel rebars[J]. Construction and Building Materials, 2018, 166:945-955.
    [49] Nikbakht E, Rashid K. Investigation on seismic performance and functionality of self-centering post-tensioned segmental columns[J]. Structure and Infrastructure Engineering, 2018, 14(6):730-742.
    [50] Shim C S, Chung C H, Kim H H. Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section[J]. Engineering Structures, 2008, 30(12):3782-3792.
    [51] Kim T H, Lee H M, Kim Y J, et al. Performance assessment of precast concrete segmental bridge columns with a shear resistant connecting structure[J]. Engineering Structures, 2010, 32(5):1292-1303.
    [52] Sideris P, Aref A J, Filiatrault A. Quasi-static cyclic testing of a large-scale hybrid sliding-rocking segmental column with slip-dominant joints[J]. Journal of Bridge Engineering, 2014, 19(10):04014036.
    [53] Mantawy I M, Thonstad T, Sanders D H, et al. Seismic performance of precast, pretensioned, and cast-in-place bridges:Shake table test comparison[J]. Journal of Bridge Engineering, 2016, 21(10):04016071.
    [54] Wang Z, Qu H, Li T, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones[J]. Engineering Structures, 2018, 158:13-27.
    [55] 贾俊峰, 赵建瑜, 张强, 等. 螺栓连接预制拼装CFST桥墩抗震性能试验[J]. 中国公路学报, 2017, 30(12):242-249. Jia Junfeng, Zhao Jianyu, Zhang Qiang, et al. Cyclic testing on seismic behavior of precast segmental CFST bridge piers with bolted connections[J]. China Journal of Highway Transport, 2017, 30(12):242-249. (in Chinese)
    [56] Gu C P, Ye G, Sun W. Ultrahigh performance concrete-properties, applications and perspectives[J]. Science China Technological Sciences, 2015, 58(4):587-599.
    [57] Binard J P. UHPC:A game-changing material for PCI bridge producers[J]. PCI Journal, 2017, 62(2):34-46.
    [58] Tazarv M, Saiidi M S. Design and construction of UHPC-filled duct connections for precast bridge columns in high seismic zones[J]. Structure and Infrastructure Engineering, 2017, 13(6):743-753.
    [59] Yamanobe S, Saito K, Ichinomiya T, et al. Bilateral loading experiment on and analysis of concrete piers using mortar-jointed ultra-high-strength fibre-reinforced concrete precast formwork[J]. Structural Concrete, 2013, 14(3):278-290.
    [60] Tazarv M, Saiidi M S. UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones[J]. Engineering Structures, 2015, 99:413-422.
    [61] Shafieifar M, Azizinamini A. Alternative ABC connections utilizing UHPC[R]. Miami:Florida International University, 2016.
    [62] Ichikawa S, Matsuzaki H, Moustafa A, et al. Seismic-resistant bridge columns with ultrahighperformance concrete segments[J]. Journal of Bridge Engineering, 2016, 21(9):04016049.
    [63] Mohebbi A, Saiidi M S, Itani A M. Shake table studies and analysis of a precast two-column bent with advanced materials and pocket connections[J]. Journal of Bridge Engineering, 2018, 23(7):04018046.
    [64] Yang C, Okumus P. Ultrahigh-performance concrete for posttensioned precast bridge piers for seismic resilience[J]. Journal of Structural Engineering, 2017, 143(12):04017161.
    [65] Mohebbi A, Saiidi M S, Itani A M. Shake table studies and analysis of a PT-UHPC bridge column with pocket connection[J]. Journal of Structural Engineering, 2018, 144(4):04018021.
    [66] Wang J Q, Wang Z, Zhang J, et al. Cyclic loading test of self-centering precast segmental unbonded posttensioned UHPFRC bridge columns[J]. Bulletin of Earthquake Engineering, 2018, 16(11):5227-5255.
    [67] Zhu Z, Ahmad I, Mirmiran A. Seismic performance of concrete-filled FRP tube columns for bridge substructure[J]. Journal of Bridge Engineering, 2006, 11(3):359-370.
    [68] ElGawady M, Booker A J, Dawood H M. Seismic behavior of posttensioned concrete-filled fiber tubes[J]. Journal of Composites for Construction, 2010, 14(5):616628.
    [69] ElGawady M A, Sha'lan A. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2010, 16(3):328-339.
    [70] Moustafa A, ElGawady M A. Shaking table testing of segmental hollow-core FRP-concrete-steel bridge columns[J]. Journal of Bridge Engineering, 2018, 23(5):04018020.
    [71] Motaref S, Saiidi M S, Sanders D. Shake table studies of energy-dissipating segmental bridge columns[J]. Journal of Bridge Engineering, 2013, 19(2):186-199.
    [72] Varela S, Saiidi M S. A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation[J]. Smart Materials and Structures, 2016, 25(7):075012.
    [73] Saiidi M S, Wang H. Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement[J]. ACI Structural Journal, 2006, 103(3):436-443.
    [74] Tazarv M, Saiid Saiidi M. Low-damage precast columns for accelerated bridge construction in high seismic zones[J]. Journal of Bridge Engineering, 2015, 21(3):04015056.
    [75] Roh H, Reinhorn A M. Hysteretic behavior of precast segmental bridge piers with superelastic shape memory alloy bars[J]. Engineering Structures, 2010, 32(10):3394-3403.
    [76] Moon D Y, Roh H, Cimellaro G P. Seismic performance of segmental rocking columns connected with NiTi martensitic SMA bars[J]. Advances in Structural Engineering, 2015, 18(4):571-584.
    [77] Nikbakht E, Rashid K, Hejazi F, et al. Application of shape memory alloy bars in self-centring precast segmental columns as seismic resistance[J]. Structure & Infrastructure Engineering, 2015, 11(3):297-309.
    [78] 方东平, 李在上, 李楠,等. 城市韧性-基于"三度空间下系统的系统"的思考[J]. 土木工程学报, 2017,50(7):1-7.Fang Dongping, Li Zaishang, Li Nan, et al. Urban resilience:a perspective of system of systems in trio spaces[J]. China Civil Engineering Journal, 2017, 50(7):1-7. (in Chinese)
    [79] Cimellaro G P, Reinhorn A M, Bruneau M. Framework for analytical quantification of disaster resilience[J].Engineering Structures, 2010, 32(11):3639-3649.
    [80] 李建中, 管仲国. 桥梁抗震设计理论发展:从结构抗震减震到震后可恢复设计[J]. 中国公路学报, 2017,30(12):1-9.Li Jianzhong, Guan Zhongguo. Research progress on bridge seismic design:target from seismic alleviation to post-earthquake structural resilience[J]. China Journal of Highway and Transport, 2017, 30(12):1-9. (in Chinese)
    [81] Seismic behavior of precast segmental UHPC bridge columns with replaceable external cover plates and internal dissipaters[J]. Engineering Structures, 2018,177:540-555.
    [82] Chou C, Chen Y. Cyclic tests of post-tensioned precast CFT segmental bridge columns with unbonded strands[J]. Earthquake Engineering & Structural Dynamics,2010, 35(2):159-175.
    [83] Marriott D, Pampanin S, Palermo A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics,2009, 38(3):331-354.
    [84] Marriott D, Pampanin S, Palermo A. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15):1723-1741.
    [85] Sarti F, Palermo A, Pampanin S. Fuse-type external replaceable dissipaters:experimental program and numerical modeling[J]. Journal of Structural Engineering, 2016, 142(12):04016134.
    [86] Andisheh K, Liu R, Palermo A, et al. Cyclic behavior of corroded fuse-type dissipaters for posttensioned rocking bridges[J]. Journal of Bridge Engineering, 2018, 23(4):04018008.
    [87] Dong H, Du X, Han Q, et al. Performance of an innovative self-centering buckling restrained brace for mitigating seismic responses of bridge structures with double-column piers[J]. Engineering Structures, 2017,148:47-62.
    [88] 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017,30(12):169-177.Han Qiang, Jia Zhen Lei, He Weili, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12):169-177. (in Chinese)
    [89] Palermo A, Mashal M.Accelerated bridge construction (ABC) and seismic damage resistant technology:a New Zealand challenge[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2012, 45(3):123-134.
    [90] Figg L, Pate W D. Precast concrete segmentalbridges-america's beautiful and affordable icons[J]. PCI Journal, 2004, 49(5):26-39.
    [91] 朱万旭, 覃荷瑛, 甘国荣, 等. 港珠澳大桥节段预制桥墩高强钢筋联接锚固体系的关键技术研究[J]. 铁道学报, 2017, 39(5):118-124.Zhu Wanxu, Tan Heying, Gan Guorong, et al. Key techniques of prestressed high-strength rebar anchorage structure for segmental precast piers of Hong Kong-Zhuhai-Macao Bridge[J]. Journal of the China Railway Society, 2017, 39(5):118-124. (in Chinese)
    [92] Muller J M, Barker J M. Design and construction of linn cove viaduct[J]. PCI Journal, 1985, 30(5):38-53.
  • [1] 樊健生, 王哲, 杨松, 陈钒, 丁然.  钢-超高性能混凝土组合箱梁弹性弯曲性能试验研究及解析解 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.11.0700
    [2] 徐文靖, 马骉, 黄虹, 苏俭, 李建中, 王瑞龙.  套筒连接的预制拼装桥墩抗震性能研究 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.11.0667
    [3] 宗成才, 冀昆, 温瑞智, 毕熙荣, 张晓瑞.  城市燃气管网三维度抗震韧性定量评估方法 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2020.04.0219
    [4] 胡淑军, 顾琦, 姜国青, 熊进刚.  一种新型自复位SMA支撑的抗震性能试验研究 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2020.02.0087
    [5] 徐明雪, 梁兴文, 汪萍, 王照耀.  超高性能混凝土梁正截面受弯承载力理论研究 . 工程力学, 2019, 36(8): 70-78. doi: 10.6052/j.issn.1000-4750.2018.06.0307
    [6] 梁兴文, 汪萍, 徐明雪, 王照耀, 于婧, 李林.  配筋超高性能混凝土梁受弯性能及承载力研究 . 工程力学, 2019, 36(5): 110-119. doi: 10.6052/j.issn.1000-4750.2018.03.0164
    [7] 李晖, 吴腾飞, 李则霖, 孙伟, 闻邦椿.  基于非接触激振-测振一体化技术的纤维增强复合材料参数辨识研究 . 工程力学, 2019, 36(12): 227-234. doi: 10.6052/j.issn.1000-4750.2019.01.0010
    [8] 李聪, 陈宝春, 黄卿维.  超高性能混凝土圆环约束收缩试验研究 . 工程力学, 2019, 36(8): 49-58. doi: 10.6052/j.issn.1000-4750.2018.10.0552
    [9] 梁兴文, 王莹, 于婧, 李林.  预制UHPC模板及采用预制模板的RC板受力性能及承载力分析 . 工程力学, 2019, 36(7): 146-155. doi: 10.6052/j.issn.1000-4750.2018.05.0255
    [10] 白国良, 秦朝刚, 徐亚洲, 苏宁粉, 吴涛, 孙煜喆.  装配整体式与现浇剪力墙结构抗震性能对比分析 . 工程力学, 2019, 36(2): 36-44. doi: 10.6052/j.issn.1000-4750.2018.10.ST07
    [11] 尚庆学, 李吉超, 王涛.  医疗系统抗震韧性评估指标体系 . 工程力学, 2019, 36(S1): 106-110. doi: 10.6052/j.issn.1000-4750.2018.06.S019
    [12] 赖建中, 朱耀勇, 谭剑敏.  超高性能混凝土在埋置炸药下的抗爆试验及数值模拟 . 工程力学, 2016, 33(5): 193-199. doi: 10.6052/j.issn.1000-4750.2014.10.0874
    [13] 种迅, 孟少平, 张林振.  后张预应力预制混凝土框架节点抗震性能数值模拟与理论分析 . 工程力学, 2013, 30(5): 153-159. doi: 10.6052/j.issn.1000-4750.2012.01.0012
    [14] 沈祥, 沙吾列提?拜开依, 阿力琴?阿布力提甫, 热依沙?艾海提, 巴格兰?叶尔麦克.  网状CBF增强砖砌体轴心受力性能试验研究 . 工程力学, 2013, 30(增刊): 109-114. doi: 10.6052/j.issn.1000-4750.2012.04.S011
    [15] 张大长, 郭 雁, 李布辉.  外壳预制核心现浇装配式T型钢筋混凝土节点抗震性能试验研究 . 工程力学, 2013, 30(1): 156-162. doi: 10.6052/j.issn.1000-4750.2011.04.0255
    [16] 李 磊, 李庆斌, 张 帆.  基于形状记忆合金的智能混凝土梁桥设计与试验研究 . 工程力学, 2010, 27(03): 45-054.
    [17] 崔 迪, 李宏男, 宋钢兵.  形状记忆合金混凝土梁力学性能试验研究 . 工程力学, 2010, 27(2): 117-123.
    [18] 张大长, 支正东, 卢中强, 金如元.  外壳预制核心现浇装配式RC柱抗震性能的试验研究 . 工程力学, 2009, 26(8): 131-137,.
    [19] 王社良, 赵 祥, 朱军强, 边兆伟.  形状记忆合金材料相变伪弹性有限元分析 . 工程力学, 2007, 24(10): 0-185.
    [20] 彭刚, 樊剑, 李黎, 唐家祥.  形状记忆合金耗能弹簧的力学性能研究 . 工程力学, 2004, 21(4): 86-90.
  • 加载中
计量
  • 文章访问数:  310
  • HTML全文浏览量:  8
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-10-08
  • 刊出日期:  2019-03-29

预制桥墩体系抗震性能研究进展:新材料、新理念、新应用

doi: 10.6052/j.issn.1000-4750.2018.10.ST03
    基金项目:  国家自然科学基金项目(51438003);中国铁路总公司科技研究开发计划重大课题项目(2017G006-C);东南大学优秀博士学位论文培育基金项目(YBPY1707);江苏高校优势学科建设工程资助项目(CE02-1-4)
    作者简介:

    王震(1990-),男,山东菏泽人,博士生,主要从事新材料在装配式结构中应用的研究(E-mail:sdkj199017@163.com);高玉峰(1966-),男,安徽滁州人,教授,博士,院长,主要从事岩土工程的研究(E-mail:yfgao66@163.com);诸钧政(1993-),男,浙江温州人,硕士生,主要新材料在装配式结构中应用的研究(E-mail:446961836@qq.com)

    通讯作者: 王景全(1976-),男,河南南阳人,教授,博士,院长,主要从事桥梁抗震、新材料应用的研究(E-mail:wangjingquan@seu.edu.cn).
  • 中图分类号: TU375;U443.22

摘要: 预制桥墩体系具有快速施工优势,在非震区、低烈度区中已得到较广泛应用,但因对其抗震性能缺乏充分认识,导致预制桥墩体系在中高烈度区的应用受到限制。该文根据抗震性能的不同,将预制桥墩体系分为“等同现浇”和“非等同现浇”两类,其中“等同现浇”预制桥墩又按照连接形式的不同分为套筒灌浆连接、波纹管灌浆连接、预留槽孔的灌浆连接、承插式连接、现浇湿接缝连接;“非等同现浇”预制桥墩按照有无专门耗能装置可分为两类;系统梳理了每种类型预制桥墩抗震性能的研究现状及典型工程应用。该文重点报道了超高性能混凝土、纤维增强复合材料和形状记忆合金3种高性能材料用于提高预制桥墩抗震性能的研究现状,指出了3种高性能材料用于预制桥墩体系中的合理方式。该文总结出将韧性抗震理念融入预制桥墩体系的两种方法:外置可更换耗能装置和内置机械连接的耗能钢筋,并对采用这两种方法的预制桥墩抗震性能研究现状进行了介绍。基于对预制桥墩体系抗震性能研究成果的整理,作者介绍了预制桥墩体系在更高抗震需求、更高刚度需求、更高使用寿命需求、更高环境保护需求4类桥梁中的应用前景,并指出了这些新应用可能带来的新课题。

English Abstract

王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
引用本文: 王景全, 王震, 高玉峰, 诸钧政. 预制桥墩体系抗震性能研究进展:新材料、新理念、新应用[J]. 工程力学, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
WANG Jing-quan, WANG Zhen, GAO Yu-feng, ZHU Jun-zheng. REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION[J]. Engineering Mechanics, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
Citation: WANG Jing-quan, WANG Zhen, GAO Yu-feng, ZHU Jun-zheng. REVIEW ON ASEISMIC BEHAVIOR OF PRECAST PIERS: NEW MATERIAL, NEW CONCEPT, AND NEW APPLICATION[J]. Engineering Mechanics, 2019, 36(3): 1-23. doi: 10.6052/j.issn.1000-4750.2018.10.ST03
参考文献 (92)

目录

    /

    返回文章
    返回