留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

路基土体“时变覆盖效应”的数值模拟分析

宋二祥 仝睿 罗爽 李鹏

宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
引用本文: 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
SONG Er-xiang, TONG Rui, LUO Shuang, LI Peng. NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL[J]. Engineering Mechanics, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
Citation: SONG Er-xiang, TONG Rui, LUO Shuang, LI Peng. NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL[J]. Engineering Mechanics, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505

路基土体“时变覆盖效应”的数值模拟分析

doi: 10.6052/j.issn.1000-4750.2018.09.0505
基金项目: 国家重点基础研究发展计划(973计划)课题项目(2014CB047003);国家自然科学基金项目(41272279,51778339)
详细信息
    作者简介:

    仝睿(1996-),男,江苏人,博士生,从事岩土力学研究(E-mail:2319110541@qq.com);罗爽(1991-),男,重庆人,博士,从事岩土力学研究(E-mail:shuangluo09@163.com);李鹏(1985-),男,黑龙江人,博士,主要从事岩土力学数值分析研究(E-mail:lip19851231@126.com).

    通讯作者: 宋二祥(1957-),男,河北人,教授,博士,从事岩土力学及工程方面的教学及科研工作(E-mail:songex@tsinghua.edu.cn).
  • 中图分类号: TU445

NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL

  • 摘要: 针对寒区铁路路基浅层土体冻结状况变化时使其透气透水性(覆盖条件)改变,进而影响其内水分迁移、集聚乃至冻胀的现象,提出“时变覆盖效应”这一概念。基于非等温水热气耦合运移模型以及刚性冰模型,建立了对路基土体内水分迁移、冻胀发展进行模拟的数学模型。对时变覆盖效应下水分迁移与冻胀的一维问题进行模拟,揭示了时变覆盖效应下路基土体水分蒸发、迁移的规律。模拟结果显示,时变覆盖效应下,土体的冻胀量较全时完全覆盖条件下相比较小,但仍有可能对铁路设施造成危害。此外,该文还对土性、温差大小以及初始含水量对时变覆盖效应的影响进行了分析。
  • [1] 徐斅祖, 王家澄, 张立新. 冻土物理学[M]. 北京:科学出版社. 2001 Xu Xiaozu, Wang Jiacheng, Zhang Lixin. Frozen soil physics[M]. Beijing:The Science Publishing Company. 2001. (in Chinese)
    [2] Taber S. The mechanics of frost heaving[J]. Journal of Geology, 1930, 38(4):303-317.
    [3] Peppin S L, Style R W. The physics of frost heave and ice-lens growth[J]. Vadose Zone Journal, 2013, 12(1):1-12.
    [4] Wark K J. Generalized thermodynamic relationships. Thermodynamics, 5th ed[M]. New York:McGraw-Hill, Inc., 1988.
    [5] Miller R D. Freezing and heaving of saturated and unsaturated soils[J]. Highway Research Record, 1972, 393:1-11.
    [6] Harlan R L. Analysis of coupled heat-fluid transport in partially frozen soil[J]. Water Resource Research, 1973, 9:1314-1323.
    [7] Miller. Frost heaving in non-colloidal soils[C]. Proceedings of the 3rd International Conference on Permafrost,. Edmonton, AB, Canada. 10-13 July, 1978. Natl. Res. Counc. of Canada, Ottawa, 1978, 1:708-713.
    [8] Konrad J, Duquennoi C. A Model for water transport and ice lensing in freezing soils[J]. Water Resources Research, 1993, 29(9):3109-3124.
    [9] 李强, 姚仰平, 韩黎明, 等. 土体的"锅盖效应"[J]. 工业建筑, 2014, 44(2):69-71. Li Qiang, Yao Yangping, Han Liming, et al. Pot-cover effect of soil[J]. Industrial Construction, 2014, 44(2):69-71. (in Chinese)
    [10] 滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变:两类"锅盖效应"的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10):1813-1821. Teng Jidong, He Zuoyue, Zhang Sheng, et al. Moisture transfer and phase change in unsaturated soils:physical mechanism and numerical model for two types of "canopy effect"[J]. Chinese Journal of Geotechnical Engineering. 2016, 38(10):1813-1821. (in Chinese)
    [11] 宋二祥, 罗爽, 孔郁斐, 等. 路基土体"锅盖效应"的数值模拟分析[J]. 岩土力学, 2017, 38(6):1781-1788. Song Erxiang, Luo Shuang, Kong Yufei, et al. Simulation and analysis of pot-cover effect on moisture transport in subgrade soil[J]. Rock and Soil Mechanics, 2017, 38(6):1781-1788. (in Chinese)
    [12] Zhang S, Teng J, He Z, et al. Importance of vapor flow in unsaturated freezing soil:a numerical study[J]. Cold Regions Science & Technology, 2016, 126(6):1-9.
    [13] Sheng D, Zhang S, Yu Z, et al. Assessing frost susceptibility of soils using PC Heave[J]. Cold Regions Science & Technology, 2013, 95(11):27-38.
    [14] Philip J R, De Vries D A. Moisture movement in porous materials under temperature gradient[J]. Trans am Geophys Union, 1957, 38(2):222-232.
    [15] Taylor G S, Luthin J N. A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal, 1978, 15(4):548-555.
    [16] Saito H, Simunek J, Scanlon B R, et al. Numerical analysis of coupled water, vapor and heat transport in the vadose zone using HYDRUS[J]. Vadose Zone Journal, 2006, 5(2):784-800.
    [17] Simunek, Saito, Sakai, et al. The hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[EB]. Departmeat of Environmental Sciences, University of California Riverside, 2005.
    [18] Gaylon S Campbell. Soil physics with BASIC:transport models for soil-plant systems[M]. Amsterdam:Vol. 14Elsevier, 1985.
    [19] 夏锦红, 陈之祥, 夏元友, 等. 不同负温条件下冻土导热系数的理论模型和试验验证[J]. 工程力学, 2018, 35(5):109-117. Xia Jinhong, Chen Zhixiang, Xia Yuanyou, et al. Theoretical model and experimental verification on thermal conductivity of frozen soil under different negative temperature conditions[J]. Engineering Mechanics, 2018, 35(5):109-117. (in Chinese)
    [20] 原喜忠, 李宁, 赵秀云, 等. 非饱和(冻)土导热系数预估模型研究[J]. 岩土力学, 2010, 31(9):2689-2694. Yuan Xizhong, Li Ning, Zhao Xiuyun, et al. Study of thermal conductivity model for unsaturated unfrozen and frozen soils[J]. Rock and Soil Mechanics, 2010, 31(9):2689-2694. (in Chinese)
    [21] Williams. Suction and its effects in unfrozen water of frozen soils. In:Permafrost, proceedings of an international conference[C]. Washington, DC:National Academy of Sciences, 1966:225-229.
    [22] Williams P J. Properties And Behavior Of Freezing Soils[M]. Norwegian:Norwegian Geotechnical Institute, 1967.
    [23] Anderson, Tice A R. Predicting unfrozen water contents in frozen soils from surface area measurements[J]. Highway Research Record, 1972, 393(2):12-18.
    [24] Fisher E A. The freezing of water in capillary systems[J]. Journal of Physical Chemistry, 2002, 28(4):360-367.
    [25] Tice A R. Determination of unfrozen water in frozen soil by pulsed nuclear magnetic resonance[C]. Permafrost, Proceedings of the Third International Conference, 1978, 1:150-155.
    [26] Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science & Technology, 2009, 59(1):34-41.
    [27] Kurylyk B L, Watanabe K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60(60):160-177.
    [28] Mckenzie J M, Voss C I, Siegel D I. Groundwater flow with energy transport and water-ice phase change:Numerical simulations, benchmarks, and application to freezing in peat bogs[J]. Advances in Water Resources, 2007, 30(4):966-983.
    [29] 武建军, 韩天一. 饱和正冻土水-热-力耦合作用的数值研究[J]. 工程力学, 2009, 26(4):246-251. Wu Jianjun, Han Tianyi. Numerical research on the coupled process of the moisture-heat-stress fields in saturated soil during freezing[J]. Engineering Mechanics, 2009, 26(4):246-251. (in Chinese)
    [30] Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 106(39):859-863.
    [31] 毛卫南, 刘建坤. 不同离散化方法在正冻土水热耦合模型中的应用[J]. 工程力学, 2013, 30(10):128-132. Mao Weinan, Liu Jiankun. Different discretization method using in coupled water and heat transport mode for soil under freezing conditions[J]. Engineering Mechanics, 2013, 30(10):128-132. (in Chinese)
    [32] Simunek J, Huang K, van Genuchten M. The HYDRUS-ET software package for simulating the one-dimentional movement of water, heat and multiple solutes in variably-saturated media, version 1.1[M]. Bratislava:Inst. Hydrology Slovak Acad. Sci, 1997.
    [33] 姚仰平, 王琳. 影响锅盖效应因素的研究[J]. 岩土工程学报, 2018, 40(8):1373-1382. Yao Yangping, Wang Lin. Research on the influence factors on the "Pot-cover effect"[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8):1373-1382. (in Chinese)
  • [1] 赵志宏, 刘桂宏, 徐浩然.  深地能源工程热水力多场耦合效应高效模拟方法 . 工程力学, 2020, 37(6): 1-18. doi: 10.6052/j.issn.1000-4750.2019.05.ST09
    [2] 解学峰, 杨易.  一种通用高层建筑模型烟囱效应的数值模拟分析 . 工程力学, 2020, 37(3): 217-227. doi: 10.6052/j.issn.1000-4750.2019.05.0251
    [3] 李腾风, 王志良, 申林方, 徐则民.  基于格子Boltzmann方法非饱和土体水热耦合模型研究 . 工程力学, 2019, 36(9): 154-160,196. doi: 10.6052/j.issn.1000-4750.2018.08.0449
    [4] 李潇, 方秦, 孔祥振, 吴昊.  砂浆材料SHPB实验及惯性效应的数值模拟研究 . 工程力学, 2018, 35(7): 187-193. doi: 10.6052/j.issn.1000-4750.2017.03.0244
    [5] 韩艳, 李凯, 陈浩, 蔡春声, 董国朝.  桥面典型车辆气动特性及车辆间挡风效应的数值模拟研究 . 工程力学, 2018, 35(4): 124-134,185. doi: 10.6052/j.issn.1000-4750.2017.01.0002
    [6] 李潇, 方秦, 孔祥振, 吴昊.  数值模拟中混凝土类材料应变率效应曲线的惯性效应修正 . 工程力学, 2018, 35(12): 46-53. doi: 10.6052/j.issn.1000-4750.2017.10.0764
    [7] 陈佩佩, 白冰.  非饱和土中温度引起水分迁移的光滑粒子法数值模拟 . 工程力学, 2016, 33(4): 150-156. doi: 10.6052/j.issn.1000-4750.2014.09.0772
    [8] 闵景新, 李云波.  水下航行体变深度发射出筒空泡数值研究 . 工程力学, 2015, 32(增刊): 342-347. doi: 10.6052/j.issn.1000-4750.2014.05.S003
    [9] 田力, 黄飞.  考虑流体效应的船-桥碰撞数值模拟法研究 . 工程力学, 2015, 32(8): 120-128. doi: 10.6052/j.issn.1000-4750.2014.01.0056
    [10] 殷志祥, 李军, 张爽.  体育场馆建筑群风荷载相互干扰效应数值模拟研究 . 工程力学, 2015, 32(增刊): 289-293. doi: 10.6052/j.issn.1000-4750.2014.05.S042
    [11] 曹健伟, 方秦, 龚自明, 吴昊.  商用客机对核安全壳撞击破坏效应的数值模拟分析 . 工程力学, 2014, 31(9): 63-70. doi: 10.6052/j.issn.1000-4750.2013.03.0255
    [12] 赵俭斌, 王志斌, 史永强.  静压PHC管桩群桩效应的数值模拟分析 . 工程力学, 2014, 31(增刊): 139-144. doi: 10.6052/j.issn.1000-4750.2013.03.S042
    [13] 沈沉, 杨志刚.  时变侧风下双层客车的流固耦合数值模拟 . 工程力学, 2014, 31(7): 203-207. doi: 10.6052/j.issn.1000-4750.2013.01.0066
    [14] 张广, 于开平, 周景军.  通气空泡重力效应三维数值仿真研究 . 工程力学, 2012, 29(8): 366-371,384. doi: 10.6052/j.issn.1000-4750.2010.11.0844
    [15] 孔晓鹏, 蒋志刚, 晏麓晖, 陈斌.  陶瓷复合装甲粘结层效应和抗多发打击性能的数值模拟研究 . 工程力学, 2012, 29(2): 251-256.
    [16] 李正良, 孙 毅, 魏奇科, 陈 胜.  山地平均风加速效应数值模拟 . 工程力学, 2010, 27(7): 32-037.
    [17] 黄建华.  考虑卸压孔卸荷作用的人工冻土冻胀特性研究 . 工程力学, 2010, 27(12): 141-148.
    [18] 卢旦, 楼文娟.  突然开孔时孔口气流动力特性参数的数值模拟 . 工程力学, 2006, 23(10): 55-60.
    [19] 熊祖钊, 郭彦懿, 王仲琦, 苏明国.  近地面云雾爆轰超压场的数值模拟及其毁伤效应 . 工程力学, 2003, 20(3): 167-170.
    [20] 付宇明, 白象忠, 许志强.  电磁热效应裂纹止裂中绕流屏蔽效应的数值模拟 . 工程力学, 2002, 19(3): 143-147,.
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  2
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-11-18
  • 刊出日期:  2019-08-25

路基土体“时变覆盖效应”的数值模拟分析

doi: 10.6052/j.issn.1000-4750.2018.09.0505
    基金项目:  国家重点基础研究发展计划(973计划)课题项目(2014CB047003);国家自然科学基金项目(41272279,51778339)
    作者简介:

    仝睿(1996-),男,江苏人,博士生,从事岩土力学研究(E-mail:2319110541@qq.com);罗爽(1991-),男,重庆人,博士,从事岩土力学研究(E-mail:shuangluo09@163.com);李鹏(1985-),男,黑龙江人,博士,主要从事岩土力学数值分析研究(E-mail:lip19851231@126.com).

    通讯作者: 宋二祥(1957-),男,河北人,教授,博士,从事岩土力学及工程方面的教学及科研工作(E-mail:songex@tsinghua.edu.cn).
  • 中图分类号: TU445

摘要: 针对寒区铁路路基浅层土体冻结状况变化时使其透气透水性(覆盖条件)改变,进而影响其内水分迁移、集聚乃至冻胀的现象,提出“时变覆盖效应”这一概念。基于非等温水热气耦合运移模型以及刚性冰模型,建立了对路基土体内水分迁移、冻胀发展进行模拟的数学模型。对时变覆盖效应下水分迁移与冻胀的一维问题进行模拟,揭示了时变覆盖效应下路基土体水分蒸发、迁移的规律。模拟结果显示,时变覆盖效应下,土体的冻胀量较全时完全覆盖条件下相比较小,但仍有可能对铁路设施造成危害。此外,该文还对土性、温差大小以及初始含水量对时变覆盖效应的影响进行了分析。

English Abstract

宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
引用本文: 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
SONG Er-xiang, TONG Rui, LUO Shuang, LI Peng. NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL[J]. Engineering Mechanics, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
Citation: SONG Er-xiang, TONG Rui, LUO Shuang, LI Peng. NUMERICAL SIMULATION AND ANALYSIS OF ‘TIME-VARYING CANOPY EFFECT’ OF MOISTURE TRANSPORT IN SUBGRADE SOIL[J]. Engineering Mechanics, 2019, 36(8): 30-39. doi: 10.6052/j.issn.1000-4750.2018.09.0505
参考文献 (33)

目录

    /

    返回文章
    返回