留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯容减震(振)系统及其研究进展

张瑞甫 曹嫣如 潘超

张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
引用本文: 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
ZHANG Rui-fu, CAO Yan-ru, PAN Chao. INERTER SYSTEM AND ITS STATE-OF-THE-ART[J]. Engineering Mechanics, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
Citation: ZHANG Rui-fu, CAO Yan-ru, PAN Chao. INERTER SYSTEM AND ITS STATE-OF-THE-ART[J]. Engineering Mechanics, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496

惯容减震(振)系统及其研究进展

doi: 10.6052/j.issn.1000-4750.2018.09.0496
基金项目: 国家自然科学基金项目(51978525);科技部"政府间国际科技创新合作"重点专项(2016YFE0127600);上海市浦江人才计划项目(17PJ1409200);山东省自然科学基金项目(ZR2018BEE03)
详细信息
    作者简介:

    张瑞甫(1980-),男,陕西人,副教授,博士,博导,主要从事工程结构振动控制研究(E-mail:zhangruifu@tongji.edu.cn);曹嫣如(1996-),女,江苏人,硕士生,主要从事工程结构振动控制研究(E-mail:1832596@tongji.edu.cn).

    通讯作者: 潘超(1985-),男,山东人,副教授,博士,硕导,主要从事工程结构振动控制研究(E-mail:panchao@ytu.edu.cn).
  • 中图分类号: TU352.11

INERTER SYSTEM AND ITS STATE-OF-THE-ART

  • 摘要: 惯容是一种两端点加速度相关型新型结构控制元件。惯容减震(振)系统是包含惯容元件的结构振动控制系统。该文整理并总结了国内外学者在惯容及惯容减震(振)系统方面取得的大量研究成果,从惯容的实现机理、惯容减震(振)系统性能、惯容减震(振)结构体系的分析设计三个方面介绍、论述惯容的原理及其在减震(振)控制领域的发展历程与研究现状。相比于传统减震(振)系统,惯容减震(振)系统具有如下优势:能够实现惯性的灵活调整和频率的调节、改变结构惯性同时基本不改变结构的物理质量、提高惯容系统中消能器的耗能效率。该文旨在梳理惯容减震(振)系统的发展脉络与现状,为惯容减震(振)系统在结构振动控制中的应用提供理论依据和设计参考,以推进惯容减震(振)系统理论与实践的持续发展。
  • [1] Soong T T, Spencer B F. Supplemental energy dissipation:state-of-the-art and state-of-the practice[J]. Engineering Structures, 2002, 24(3):243-259.
    [2] Hao L F, Zhang R F. Structural safety redundancy-based design method for structure with viscous dampers[J]. Structural Engineering and Mechanics, 2016, 59(5):821-840.
    [3] Zhang R F, Wang C, Pan C, et al. Simplified design of elastoplastic structures with metallic yielding dampers based on the concept of uniform damping ratio[J]. Engineering Structures, 2018, 176:734-745.
    [4] Hao L F, Zhang R F, Jin K. Direct design method based on seismic capacity redundancy for structures with metal yielding dampers[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(2):515-534.
    [5] Den Hartog J P. Mechanical vibrations[M]. 4th. New York:Dover, 1956.
    [6] Fujino Y, Sun L, Pacheco B M, et al. Tuned liquid damper (TLD) for suppressing horizontal motion of structures[J]. Journal of Engineering Mechanics, 1992, 118(10):2017-2030.
    [7] 滕军, 刘季. 高耸结构顺风向调谐质量阻尼振动控制系统优化设计[J]. 建筑结构, 1995(7):7-13. Teng Jun, Liu Ji. Optimal design of TMD system for along-wind dynamic response control of high-rise buildings[J]. Building Structure, 1995(7):7-13. (in Chinese)
    [8] 刘季, 李惠. 底层柔性建筑和液压质量控制系统(Hms)的抗震优化设计方法[J]. 工程力学, 1996, 13(3):61-68. Liu Ji, Li Hui. Optimal design method for flexible first story building and hydraulic-mass control system[J]. Engineering Mechanics, 1996, 13(3):61-68. (in Chinese)
    [9] Sadek F, Mohraz B, Taylor A W, et al. A method of estimating the parameters of tuned mass dampers for seismic applications[J]. Earthquake Engineering & Structural Dynamics, 1997, 26(6):617-635.
    [10] 楼梦麟, 韩博宇. 高层建筑环境振动TLD控制研究[J]. 工程力学, 2015, 32(增刊1):184-190. Lou Menglin, Han Boyu. Research on TLD control to environmental vibration of high-rise buildings[J]. Engineering Mechanics, 2015, 32(Supll 1):184-190. (in Chinese)
    [11] Saito K, Toyota K, Nagae K, et al. Dynamic loading test and its application to a high-rise building of viscous damping devices with amplification system[C]. Proceedings of the Third World Conference on Structural Control, Como, Italy, 2002.
    [12] 斉藤賢二, 井上範夫. 慣性接続要素を利用した粘性ダンパーをもつ制振構造の最適応答制御に関するー 考察:最適設計システムにおける線形粘性要素の等価非線形粘性要素への置換法[J]. 日本建築学会技術報告集, 2007, 13(26):457-462. Saito K, Inoue N. A study on optimum response control of passive control systems using viscous damper with inertial mass:substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems[J]. Journal of Architecture and Building Science, 2007, 13(26):457-462. (in Japanese)
    [13] 斉藤賢二, 栗田哲, 井上範夫. 慣性接続要素を利用した線形粘性ダンパーによる一質点構造の最適応答制御と Kelvin モデル化手法に関する考察[J]. 構造工学論文集, 2007, 53B:53-66. Saito K, Kurita S, Inoue N. Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling[J]. Journal of Structural Engineering, 2007, 53:53-66. (in Japanese)
    [14] Inoue N, Ikago K. Displacement control design of buildings:design method of long-period seismic isolation buildings against earthquake[M]. Tokyo, Japan:Maruzen Publishing, 2012.
    [15] Ikago K, Sugimura Y, Saito K, et al. Simple design method for a tuned viscous mass damper seismic control system[C]. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
    [16] Smith M C. Synthesis of mechanical networks:the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10):1648-1662.
    [17] Firestone F A. A new analogy between mechanical and electrical systems[J]. Journal of the Acoustical Society of America, 1933, 4(3):249-267.
    [18] Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3):453-474.
    [19] 新垣忠志, 黒田英二, 有馬文昭, 等. ボールネジを用いた制震装置の開発:その 1制震チューブ· 制震ディスクの性能試験[J]. 日本建築学会技術報告集, 1999, 5(8):239-244. Arakaki T, Kuroda H, Arima F, et al. Development of seismic devices applied to ball screw:Part 1 Basic performance test of RD-series[J]. Journal of Architecture and Building Science, 1999, 5(8):239-244. (in Japanese)
    [20] Kawamata S. Development of a vibration control system of structures by means of mass pumps[R]. Tokyo, Japan:Institute of Industrial Science, University of Tokyo, 1973.
    [21] Severud L K, Summers G D. Design considerations for mechanical snubbers[R]. Richland,WA (USA):Hanford Engineering Development Lab., 1980:1-15.
    [22] Kawaguchi O, Kanoh T, Akino K, et al. Research and development of seismic restraint snubbers(I)[J]. Transactions of the Atomic Energy Society of Japan, 1991, 33(1):76-89.
    [23] Nims D K, Kelly J M. Experimental study of mechanical pipe snubber seismic behavior[J]. Asme Trans Journal of Pressure Vessel Technology, 1997, 119(3):384-388.
    [24] 新垣忠志, 黒田英二, 有馬文昭, 等. ボールネジを用いた制震装置の開発:その 2制震チューブの減衰性能とその評価法[J]. 日本建築学会技術報告集, 1999, 5(9):265-270. Arakaki T, Kuroda H, Arima F, et al. Development of seismic devices applied to ball screw:Part 2 Performance test and evaluation of RD-series[J]. Journal of Architecture and Building Science, 1999, 5(9):265-270. (in Japanese)
    [25] Papageorgiou C, Smith M C. Laboratory experimental testing of inerters[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005:3351-3356.
    [26] Makris N, Kampas G. Seismic protection of structures with supplemental rotational inertia[J]. Journal of Engineering Mechanics, 2016, 142(11):04016089-1-04016089-28.
    [27] Kawamata S. Liquid type mass damper with elongated discharge tube[P]. United States:4,872,649, 1989.
    [28] Smith M C, Houghton N E, Long P J G, et al. Force-controlling hydraulic device[P]. United States:8,881,876, 2011.
    [29] Wang F C, Hong M F, Lin T C. Designing and testing a hydraulic inerter[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2011, 225(1):66-72.
    [30] Swift S J, Smith M C, Glover A R, et al. Design and modelling of a fluid inerter[J]. International Journal of Control, 2013, 86(11):2035-2051.
    [31] Gonzalez-Buelga A, Clare L R, Neild S A, et al. An electromagnetic vibration absorber with harvesting and tuning capabilities[J]. Structural Control & Health Monitoring, 2015, 22(11):1359-1372.
    [32] Gonzalez-Buelga A, Clare L R, Neild S A, et al. An electromagnetic inerter-based vibration suppression device[J]. Smart Materials and Structures, 2015, 24(5):055015-1-055015-10.
    [33] Høgsberg J, Brodersen M L, Krenk S. Resonant passive-active vibration absorber with integrated force feedback control[J]. Smart Materials & Structures, 2016, 25(4):047001-1-047001-8.
    [34] Høgsberg J, Krenk S. Calibration of piezoelectric RL shunts with explicit residual mode correction[J]. Journal of Sound & Vibration, 2016, 386:65-81.
    [35] Høgsberg J, Krenk S. Accurate calibration of RL shunts for piezoelectric vibration damping of flexible structures[C]. Proceedings of the 27th International Conference on Adaptive Structures and Technologies, Lake George, New York, USA, 2016:1-11.
    [36] Wang F C, Chen Y C, Lee C H. Design and optimization of inerter layouts for a multi-layers building model[C]. Society of Instrument and Control Engineers of Japan (SICE), 201655th Annual Conference of the. IEEE, 2016:1076-1081.
    [37] 聂佳梅, 张孝良, 江浩斌, 等. 惯容器模型结构探索[J]. 机械设计与研究, 2012, 28(1):29-32. Nie Jiamei, Zhang Xiaoliang, Jiang Haobin, et al. Research on the inerter structure[J]. Machine Design and Research, 2012, 28(1):29-32. (in Chinese)
    [38] Kida H, Ikago K, Inoue N. Applicability of force-restricted tuned viscous mass dampers to high-rise buildings subjected to long-period ground motions[C]. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
    [39] Nakamura Y, Hanzawa T, Isoda K. Performance-based placement design of tuned inertial mass dampers[C]. Proceedings of 13th World Conference on Seismic Isolation, Energy Dissipation and Active Control of Structures, Sendai, Japan, 2013:1-8.
    [40] Ikago K, Sugimura Y, Saito K, et al. Modal response characteristics of seismic controlled MDOF shear building using tuned viscous mass dampers[J]. Journal of Structural and Construction Engineering, 2014, 79(697):367-374. (in Japanese)
    [41] Hu Y L, Chen M Z Q, Shu Z, et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution[J]. Journal of Sound and Vibration, 2015, 346:17-36.
    [42] Krenk S, Høgsberg J. Tuned resonant mass or inerter-based absorbers:unified calibration with quasi-dynamic flexibility and inertia correction[J]. Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 2016, 472(2185):20150718.
    [43] Chen M Z Q, Papageorgiou C, Scheibe F, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1):10-26.
    [44] Smith M C, Wang F C. Performance benefits in passive vehicle suspensions employing inerters[J]. Vehicle System Dynamics, 2004, 42(4):235-257.
    [45] Shen Y J, Chen L, Yang X F, et al. Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension[J]. Journal of Sound and Vibration, 2016, 361:148-158.
    [46] Hu Y L, Chen M Z Q, Sun Y H. Comfort-oriented vehicle suspension design with skyhook inerter configuration[J]. Journal of Sound and Vibration, 2017, 405:34-47.
    [47] Evangelou S, Limebeer D J N, Sharp R S, et al. Mechanical steering compensators for high-performance motorcycles[J]. Journal of Applied Mechanics, Transactions ASME, 2006, 74(2):332-346.
    [48] Wang F C, Su W J. Inerter nonlinearities and the impact on suspension control[C]. American Control Conference, Seattle, WA, USA, 2008:3245-3250.
    [49] Wang F C, Liao M K, Liao B H, et al. The performance improvements of train suspension systems with mechanical networks employing inerters[J]. Vehicle System Dynamics, 2009, 47(7):805-830.
    [50] Wang F C, Wu S Y. Vibration control of an optical table employing mechatronic inerter networks[J]. Journal of Vibration and Control, 2016, 22(1):224-234.
    [51] 陈龙, 张孝良, 聂佳梅, 等. 基于半车模型的两级串联型ISD悬架性能分析[J]. 机械工程学报, 2012, 48(6):102-108. Chen Long, Zhang Xiaoliang, Nie Jiamei, et al. Performance analysis of two-stage series-connected inerter-spring-damper suspension based on half-car model[J]. Journal of Mechanical Engineering, 2012, 48(6):102-108. (in Chinese)
    [52] 杨晓峰, 沈钰杰, 陈龙, 等. 基于动力吸振理论的车辆ISD悬架设计与性能分析[J]. 汽车工程, 2014, 36(10):1262-1266, 1277. Yang Xiaofeng, Shen Yujie, Chen Long, et al. Design and performances analysis of vehicle ISD suspension based on dynamic vibration absorber theory[J]. Automotive Engineering, 2014, 36(10):1262-1266, 1277. (in Chinese)
    [53] Chen L, Liu C, Liu W, et al. Network synthesis and parameter optimization for vehicle suspension with inerter[J]. Advances in Mechanical Engineering, 2016, 9(1):1687814016684704-1-1687814016684704-7.
    [54] Shen Y, Chen L, Liu Y, et al. Modeling and optimization of vehicle suspension employing a nonlinear fluid inerter[J]. Shock and Vibration 2016:2623017-1-2623017-9.
    [55] Dong X, Liu Y, Chen M Z Q. Application of inerter to aircraft landing gear suspension[C]. The 34th Chinese Control Conference, Hangzhou, China, 2015:2066-2071.
    [56] Liu Y, Chen M Z Q, Tian Y. Nonlinearities in landing gear model incorporating inerter[C]. International Conference on Information and Automation, Lijiang, China, 2015:696-701.
    [57] Papageorgiou C, Houghton N E, Smith M C. Experimental testing and analysis of inerter devices[J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 131(1):011001-1-011001-11.
    [58] Chen M Z Q, Hu Y, Li C, et al. Semi-active suspension with semi-active inerter and semi-active damper[C]. The 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, 2014:11225-11230.
    [59] Chen M Z Q, Hu Y, Li C, et al. Application of semi-active inerter in semi-active suspensions via force tracking[J]. Journal of Vibration and Acoustics, 2016, 138(4):041014:1-11.
    [60] Hu Y, Chen M Z Q, Xu S, et al. Semiactive inerter and its application in adaptive tuned vibration absorbers[J]. IEEE Transactions on Control Systems Technology, 2016, 25(1):294-300.
    [61] Kuroda H, Arima F, Baba K, et al. Principles and characteristics of viscous damping devices (gyro-damper), the damping forces which are highly amplified by converting the axial movement to rotary one[C]. The 12th world conference on earthquake engineering, Auckland, New Zealand, 2000.
    [62] Furuhashi T, Ishimaru S. Mode control seismic design with dynamic mass[C]. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
    [63] Saito K, Yogo K, Sugimura Y, et al. Application of rotary inertia to displacement reduction for vibration control system[C]. The 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
    [64] Hessabi R M, Mercan O. Application of gyro-mass dampers to mitigate the seismic failure in soft first story buildings[C]. Proceedings of Structures Congress 2015, Portland, Oregon, 2015:2032-2043.
    [65] Hessabi R M, Mercan O. Investigations of the application of gyro-mass dampers with various types of supplemental dampers for vibration control of building structures[J]. Engineering Structures, 2016, 126:174-186.
    [66] Wang F C, Hong M F, Chen C W. Building suspensions with inerters[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2010, 224(C8):1605-1616.
    [67] Saitoh M. On the performance of gyro-mass devices for displacement mitigation in base isolation systems[J]. Structural Control & Health Monitoring, 2012, 19(2):246-259.
    [68] Takewaki I, Murakami S, Yoshitomi S, et al. Fundamental mechanism of earthquake response reduction in building structures with inertial dampers[J]. Structural Control & Health Monitoring, 2012, 19(6):590-608.
    [69] Hwang J S, Kim J, Kim Y M. Rotational inertia dampers with toggle bracing for vibration control of a building structure[J]. Engineering Structures, 2007, 29(6):1201-1208.
    [70] 斉藤賢二, 杉村義文, 井上範夫. 慣性接続要素を利用した粘性ダンパーによる制振構造の応答制御に関する一考察[J]. 構造工学論文集, 2008, 54(B):635-648. Saito K, Sugimura Y, Inoue N. A study on response control of a structure using viscous damper with inertial mass[J]. Journal of structural engineering, 2008, 54(B):635-648. (in Japanese)
    [71] Saito K, Sugimura Y, Nakaminami S, et al. Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element[C]. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
    [72] Arai T, Aburakawa T, Ikago K, et al. Verification on effectiveness of a tuned viscous mass damper and its applicability to non-linear structural systems[J]. Journal of Structural & Construction Engineering, 2009, 645(74):1993-2002.
    [73] 木田英範, 中南滋樹, 斉藤賢二, 五十子幸樹, 井上範夫. 実大加振実験に基づく同調粘性マスダンパーの 解析モデルに関する検証[J]. 構造工学論文集, 2010, 56B:137-146. Kida H, Nakaminami S, Saito K, et al. Verification in analysis model of tuned viscous mass damper based on full-scale dynamic tests[J]. Journal of Structural Engineering, 2010, 56B:137-146. (in Japanese)
    [74] 木田英範, 渡邉義仁, 中南滋樹, 田中久也, 杉村義文, 斉藤賢二, 五十子幸樹, 井上範夫. 軸力制限機構付き同調粘性マスダンパーの実大加振実験とその解析的検証[J]. 日本建築学会構造系論文集, 2011, 76(665):1271-1280. Kida H, Watanabe Y, Nakaminami S, et al. Full-scale dynamic tests of tuned viscous mass damper with force restriction mechanism and Its analytical verification[J]. Journal of Structural and Construction Engineering, 2011, 76(665):1271-1280. (in Japanese)
    [75] Sugimura Y, Goto W, Tanizawa H, et al. Response control effect of steel building structure using tuned viscous mass damper[C]. The 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
    [76] Shinjo T, Ikenaga M, Ikago K, et al. Optimum response control of multi-degree-of-freedom seismic control system incorporated with concentratedly arranged tuned viscous mass dampers[J]. Journal of Structural and Construction Engineering, 2015, 80(715):1393-1402.
    [77] Ikago K, Sugimura Y, Saito K, et al. Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers[J]. Journal of Asian Architecture & Building Engineering, 2012, 11(2):375-382.
    [78] 李超, 张瑞甫, 赵志鹏, 等. 调谐黏滞质量阻尼器基于遗传算法的参数优化研究[J]. 结构工程师, 2016, 32(4):124-131. Li Chao, Zhang Ruifu, Zhao Zhipeng, et al. Optimum study of tuned viscous mass dampers based on genetic algorithm[J]. Structural Engineers, 2016, 32(4):124-131. (in Chinese)
    [79] 阎武通, 韩冰, 文永奎. 新型调谐黏滞质量阻尼器对斜拉桥的减震控制分析[J]. 土木工程学报, 2016(增刊1):66-71. Yan Wutong, Han Bing, Wen Yongkui. Seismic control analysis of cable-stayed bridge based on tuned viscous mass damper[J]. China Civil Engineering Journal, 2016(Suppl 1):66-71. (in Chinese)
    [80] 裴星洙, 邱吉祥, 伏恬甜. 基于能量法的调谐黏性质量阻尼器地震响应预测式研究[J]. 振动与冲击, 2017, 36(19):29-35. Pei Xingzhu, Qiu Jixiang, Fu Tiantian. Optimization design method for tuned viscous mass dampers based on the energy balance principle[J]. Journal of Vibration and Shock, 2017, 36(19):29-35. (in Chinese)
    [81] Asai T, Ikago K, Araki Y. Outrigger tuned viscous mass damping system for high-rise buildings subject to earthquake loadings[C]. 6th International Conference on Advances in Experimental Structural Engineering, University of Illinois, Urbana-Champaign, United States, 2015:1-11.
    [82] 池永昌容, 由川太一, 長瀬拓也, 等. 軸力制限機構付き同調粘性マスダンパー制振システムの振動台実験[J]. 日本建築学会技術報告集, 2012, 18(39):437-440. Ikenaga M, Yoshikawa T, Nagase T, et al. Shaking table test of seismic control system using force restricted tuned viscous mass damper[J]. AIJ Journal of Technology and Design, 2012, 18(39):437-440. (in Japanese)
    [83] Nakaminami S, Ikago K, Inoue N, et al. Response characteristics of a base-isolated structure incorporated with a force-restricted viscous mass damper[C]. The 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
    [84] 池永昌容, 五十子幸樹, 井上範夫. 粘性要素を軸力制限機構に用いた粘性マスタンパーの免震構造物へ の適用性[J]. 日本建築学会構造系論文集, 2015, 80(714):1251-1260. Ikenaga M, Ikago K, Inoue, N. Feasibility of viscous mass damper with bingham fluid origined force restriction mechanism for base-isolated structure[J]. Journal of Structural & Construction Engineering, 2015, 80(714):1251-1260. (in Japanese)
    [85] Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(8):1129-1147.
    [86] Lazar I F, Neild S A, Wagg D J. Inerter-based vibration suppression systems for laterally and base-excited structures[C]. Proceedings of EURODYN 2014-9th International Conference on Structural Dynamics, Porto, Portugal, 2014:1525-1530.
    [87] Lazar I F, Neild S A, Wagg D J. Design and performance analysis of inerter-based vibration control systems[C]. Dynamics of Civil Structures, Volume 4:Proceedings of the 32nd IMAC, 2014:493-500.
    [88] Lazar I F, Neild S A, Wagg D J. Performance analysis of cables with attached tuned-inerter-dampers[C]. Conference Proceedings of the Society for Experimental Mechanics Series, 2015:433-441.
    [89] Lazar I F, Neild S A, Wagg D J. Vibration suppression of cables using tuned inerter dampers[J]. Engineering Structures, 2016, 122:62-71.
    [90] Sun L M, Hong D X, Chen L. Cables interconnected with tuned inerter damper for vibration mitigation[J]. Engineering Structures, 2017, 151:57-67.
    [91] Luo J, Jiang J Z, Macdonald J H G. Damping performance of taut cables with passive absorbers incorporating inerters[C]. Journal of Physics:Conference Series 744, 2016:012046.
    [92] Zhang S Y, Jiang J Z, Neild S. Passive vibration suppression using inerters for a multi-storey building structure[C]. Journal of Physics:Conference Series 744, 2016:012044-1-012044-9.
    [93] Zhang S Y, Jiang J Z, Neild S. Optimal configurations for a linear vibration suppression device in a multi-storey building[J]. Structural Control & Health Monitoring, 2017, 24(3):e1887-1-e1887-17.
    [94] Gonzalez-Buelga A, Lazar I F, Jiang J Z, et al. Assessing the effect of nonlinearities on the performance of a tuned inerter damper[J]. Structural Control & Health Monitoring, 2017, 24(3):e1879.
    [95] Domenico D D, Impollonia N, Ricciardi G. Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper[J]. Soil Dynamics & Earthquake Engineering, 2018, 105:37-53.
    [96] De Domenico D, Ricciardi G. Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices:A comparative study[J]. Structural Control and Health Monitoring, 2018, 25(10):e2234.
    [97] Wen Y, Chen Z, Hua X. Design and evaluation of tuned inerter-based dampers for the seismic control of MDOF structures[J]. Journal of Structural Engineering, 2016, 143(4):04016207-1-04016207-11.
    [98] Garrido H, Curadelli O, Ambrosini D. Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper[J]. Engineering Structures, 2013, 56:2149-2153.
    [99] Marian L, Giaralis A. Optimal design of inverter devices combined with TMDs for vibration control of buildings exposed to sto-chastic seismic excitations[C]. Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures-Proceedings of the 11th International Conference on Structural Safety and Reliability, New York, USA, 2013:1025-1032.
    [100] Marian L, Giaralis A. Optimal design of a novel tuned mass-damper-inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems[J]. Probabilistic Engineering Mechanics, 2014, 38(SI):156-164.
    [101] Giaralis A, Marian L. Use of inerter devices for weight reduction of tuned mass-dampers for seismic protection of multi-story building:the Tuned Mass-Damper-Interter (TMDI)[C]. Active and Passive Smart Structures and Integrated Systems, Las Vegas, Nevada, United States, 2016:97991G-1-97991G-10.
    [102] Marian L, Giaralis A. The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting[J]. Smart Structures and Systems, 2017, 19(6):665-678.
    [103] Pietrosanti D, De Angelis M, Basili M. Optimal design and performance evaluation of systems with Tuned Mass Damper Inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(8):1367-1388.
    [104] Giaralis A, Taflanidis A A. Optimal tuned mass-damperinerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria[J]. Structural Control & Health Monitoring, 2018, 25(2):e2082.
    [105] De Domenico D, Ricciardi G. An enhanced base isolation system equipped with optimal tuned mass damper inerter (TMDI)[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(5):1169-1192.
    [106] Jin X, Chen M Z Q, Huang Z. Minimization of the beam response using inerter-based passive vibration control configurations[J]. International Journal of Mechanical Sciences, 2016, 119:80-87.
    [107] Ruiz R O, Giaralis A, Taflanidis A, et al. Risk-informed optimization of the tuned mass-damper-inerter (TMDI) for seismic protection of buildings in Chile[C]. The 16th World Conference on Earthquake Engineering, Santiago, Chile, 2017.
    [108] 张瑞甫. 储液罐地震响应控制研究[R]. 上海:同济大学, 2014. Zhang Ruifu. Research on seismic response analysis of base-isolated vertical tank[R]. Shanghai:Tongji University, 2014. (in Chinese)
    [109] 罗浩, 张瑞甫, 翁大根, 等. 一种旋转黏滞质量阻尼器对结构响应的控制研究[J]. 防灾减灾工程学报, 2016, 36(2):295-301, 308. Luo Hao, Zhang Ruifu, Weng Dagen, et al. Study of a series viscous mass damper in the control of structural response[J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2):295-301, 308. (in Chinese)
    [110] Ohtake T, Sunakoda K, Matsuoka T. Study on vibration control device using power generator[C]. ASME PVP2006/ICPVT-11 Conference, Vancoucer, BC, Canada, 2006, 73:185-189.
    [111] Nakamura Y, Fukukita A, Tamura K, et al. Seismic response control using electromagnetic inertial mass dampers[J]. Earthquake Engineering and Structural Dynamics, 2014, 43(4):507-527.
    [112] 畑中友, 船木尚己. 慣性質量効果を有する液流ダン パーを用いた 1層フレーム試験体の振動応答特性[J]. 構造工学論文集, 2017, 63B:205-211. Hatanaka T, Funaki N. Experimental study on dynamic behavior of test frame passively controlled by liquid damper with inertia mass effect[J]. Journal of Structural Engineering, 2017, 63B:205-211. (in Japanese)
    [113] 畑中友, 薛松濤, 船木尚己. 慣性質量効果を有する 液流ダンパーを用いた 1層骨組の振動応答特性[C]. 第15回日本地震工学シンポジウム, 仙台, 2018. Hatanaka T, Xue S T, Funaki N. Dynamic behavior of single story frame passively controlled by liquid damper with inertia mass effect[C]. The 15th Japan Earthquake Engineering Symposium,Sendai, Japan, 2018. (in Japanese)
    [114] Asai T, Araki Y, Ikago K. Energy harvesting potential of tuned inertial mass electromagnetic transducers[J]. Mechanical Systems and Signal Processing, 2017, 84(Part A):659-672.
    [115] Faraj R, Holnickiszulc J, Knap L, et al. Adaptive inertial shock-absorber[J]. Smart Materials & Structures, 2016, 25(3):035031.
    [116] Brzeski P, Kapitaniak T, Perlikowski P. Novel type of tuned mass damper with inerter which enables changes of inertance[J]. Journal of Sound & Vibration, 2015, 349:56-66.
    [117] Brzeski P, Lazarek M, Perlikowski P. Experimental study of the novel tuned mass damper with inerter which enables changes of inertance[J]. Journal of Sound and Vibration, 2017, 404:47-57.
    [118] Brzeski P, Perlikowski P. Effects of play and inerter nonlinearities on the performance of tuned mass damper[J]. Nonlinear Dynamics, 2017, 88(2):1-15.
    [119] 赵志鹏, 张瑞甫, 潘超. 一种用于结构减震的金属屈服型惯容系统[C]. 第十届全国地震工程学术会议, 上海, 2018. Zhao Zhipeng, Zhang ruifu, Pan Chao. An inerter system with metallic yielding element for vibration mitigation[C]. 10th CNCEE, Shanghai, China, 2018. (in Chinese)
    [120] Zhang R F, Zhao Z P, Dai K S. Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system[J]. Engineering Structures, 2019, 180:29-39.
    [121] 班鑫磊, 谢丽宇, 薛松涛, 等. 拉索式旋转电涡流阻尼器的理论模型及频域响应分析[J]. 地震工程学报, 2018, 40(5):941-945. Ban Xinlei, Xie Liyu, Xue Songtao, et al. Theoretical model and analysis of the frequency response of a rotational eddy current damper with cable bracing[J]. China Earthquake Engineering Journal, 2018, 40(5):941-945. (in Chinese)
    [122] Luo H, Chong C, Higano H, et al. Development of an inerter-spring-damper device for the protection of long-period structures subjected to extreme seismic events[C]. Proceedings of the 16th International Symposium on New Technologies for Urban Safety of Mega Cities in Asia, Sendai, Japan, 2017.
    [123] Lu L, Duan Y F, Spencer B F, et al. Inertial mass damper for mitigating cable vibration[J]. Structural Control & Health Monitoring, 2017, 24(10):e1986.
    [124] Zhao Z P, Lu Z, Zhang R F. A particle inerter system for structural seismic response mitigation[J]. Journal of the Franklin Institute, 2019-doi: https://doi.org/10.1016/j.jfranklin.2019.02.001.
    [125] Luo H, Zhang R F, Weng D G. Mitigation of liquid sloshing in storage tanks by using a hybrid control method[J]. Soil Dynamics and Earthquake Engineering, 2016, 90:183-195.
    [126] Pan C, Zhang R F. Design of structure with inerter system based on stochastic response mitigation ratio[J]. Structural Control and Health Monitoring, 2018, 25(6):e2169.
    [127] Pan C, Zhang R F, Luo H, et al. Demand-based optimal design of oscillator with parallel-layout viscous inerter damper[J]. Structural Control & Health Monitoring, 2018, 25(1):e2051.
    [128] Chen Q J, Zhao Z P, Zhang R F, et al. Impact of soil-structure interaction on structures with inerter system[J]. Journal of Sound and Vibration, 2018, 433:1-15.
    [129] Xia Y Y, Zhang R F, Friswell M I, et al. Suppression of the wind-induced vibration of high-rise buildings with inerter systems[C]. International Conference on Noise and Vibration Engineering, Leuven, Belgium, 2018:4223-4234.
    [130] 赵志鹏, 潘超, 郝霖霏, 等. 基于性能目标的储液罐安装惯容系统设计方法[C]. 第十届全国地震工程学术会议, 上海, 2018. Zhao Zhipeng, Pan Chao, Hao Linfei, et al. Performance-based optimum design of storage tank with inerter system[C]. 10th CNCEE, Shanghai, China, 2018. (in Chinese)
    [131] 赵志鹏, 潘超, 吴敏君, 等. 基于性能需求的安装惯容系统隔震结构设计方法[C]. 第264场中国工程院科技论坛暨第十届全国防震减灾工程学术研讨会, 成都, 2018. Zhao Zhipeng, Pan Chao, Wu Minjun, et al. Performance-oriented optimal design of base-isolated structure with ineter system[C]. 264th China Engineering Science and Technology Forum and the 10th National Conference on Earthquake Disaster Prevention and Mitigation Engineering, Chengdu, China, 2018. (in Chinese)
    [132] 张璐琦. 惯容减震系统在抗震墙结构中的应用研究[D]. 上海:同济大学, 2018. Zhang Luqi. Research on the application of shear wall structure with the inerter system[D]. Shanghai:Tongji University, 2018. (in Chinese)
    [133] 曹嫣如. 具有惯容系统结构的风振控制研究[D]. 上海:同济大学, 2018. Cao Yanru. Study on wind-induced vibration control of structures with inerter system[D]. Shanghai:Tongji University, 2018. (in Chinese)
    [134] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36(1):129-137, 145. Pan Chao, Zhang Ruifu, Wang Chao, et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics, 2019, 36(1):129-137, 145. (in Chinese)
  • [1] 赵志鹏, 张瑞甫, 陈清军, 潘超, 王超.  基于减震比设计方法的惯容减震结构分析 . 工程力学, 2019, 36(S1): 125-130. doi: 10.6052/j.issn.1000-4750.2018.05.S022
    [2] 潘超, 张瑞甫, 王超, 逯静洲.  单自由度混联II型惯容减震体系的随机地震响应与参数设计 . 工程力学, 2019, 36(1): 129-137,145. doi: 10.6052/j.issn.1000-4750.2017.11.0809
    [3] 陈士通, 张文学, 杜修力, 刘海陆.  连续梁桥锁死销减震机理及影响参数研究 . 工程力学, 2016, 33(2): 74-80. doi: 10.6052/j.issn.1000-4750.2014.07.0669
    [4] 丁幼亮, 耿方方, 葛文浩, 宋建永, 李万恒, 王玉倩.  多塔斜拉桥风致抖振响应的粘滞阻尼器控制研究 . 工程力学, 2015, 32(4): 130-137. doi: 10.6052/j.issn.1000-4750.2013.10.0968
    [5] 楼梦麟, 韩博宇.  高层建筑环境振动TLD控制研究 . 工程力学, 2015, 32(增刊): 184-190. doi: 10.6052/j.issn.1000-4750.2014.05.S052
    [6] 徐亚兰, 陈建军.  空间范数在压电柔性结构振动控制中的应用研究 . 工程力学, 2013, 30(10): 1-4,13. doi: 10.6052/j.issn.1000-4750.2012.06.0471
    [7] 张纪刚, 刘艳梅, 王贤茂.  基于PFD-SMA支撑体系的海洋平台结构振动控制研究 . 工程力学, 2013, 30(增刊): 338-342. doi: 10.6052/j.issn.1000-4750.2012.04.S025
    [8] 施 刚, 班慧勇, 石永久, 王元清.  高强度钢材钢结构研究进展综述 . 工程力学, 2013, 30(1): 1-13. doi: 10.6052/j.issn.1000-4750.2012.05.ST10
    [9] 徐培蓁, 尹学军, 高星亮, 叶列平, 周健.  TMD 振动控制在登机廊桥上的应用研究 . 工程力学, 2012, 29(3): 192-198.
    [10] 聂建国, 王宇航.  钢-混凝土组合梁疲劳性能研究综述 . 工程力学, 2012, 29(6): 1-11. doi: 10.6052/j.issn.1000-4750.2010.08.0587
    [11] 聂建国, 陶慕轩.  体外预应力钢-混凝土组合梁受力性能的研究现状与展望 . 工程力学, 2011, 28(增刊Ⅱ): 129-141,.
    [12] 王威远, 魏英杰, 王 聪, 邹振祝.  压电锥壳结构振动主动控制研究 . 工程力学, 2008, 25(10): 0-240.
    [13] 王克海, 李 茜.  桥梁抗震的研究进展 . 工程力学, 2007, 24(增刊Ⅱ): 0-082,.
    [14] 杨润林, 闫维明, 周锡元, 董娣, 牛东旭, 刘锡荟.  基于离复位控制策略的结构振动控制研究 . 工程力学, 2006, 23(5): 1-8.
    [15] 霍林生, 李宏男.  环形调液阻尼器(CTLCD)对结构平移-扭转耦联振动控制的参数研究 . 工程力学, 2005, 22(2): 124-131.
    [16] 孙作玉, 程树良, 王焕定.  隔震换能系统的换能效率及振动控制效果的研究 . 工程力学, 2005, 22(2): 132-136.
    [17] 金江, 刘红梅, 洪俊青, 张建生.  基于SMA主动阻尼的桅杆振动控制的研究 . 工程力学, 2004, 21(2): 119-123.
    [18] 王修勇, 陈政清, 高赞明, 倪一清.  磁流变阻尼器对斜拉索振动控制研究 . 工程力学, 2002, 19(6): 22-28,4.
    [19] 李宏男.  摆—结构体系减震性能研究 . 工程力学, 1996, 13(3): 123-129.
    [20] 许溶烈, 陈祥福, 陈进.  我国深基础工程的理论研究和应用进展 . 工程力学, 1990, 7(4): 115-122.
  • 加载中
计量
  • 文章访问数:  296
  • HTML全文浏览量:  13
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-09
  • 修回日期:  2019-04-01
  • 刊出日期:  2019-10-25

惯容减震(振)系统及其研究进展

doi: 10.6052/j.issn.1000-4750.2018.09.0496
    基金项目:  国家自然科学基金项目(51978525);科技部"政府间国际科技创新合作"重点专项(2016YFE0127600);上海市浦江人才计划项目(17PJ1409200);山东省自然科学基金项目(ZR2018BEE03)
    作者简介:

    张瑞甫(1980-),男,陕西人,副教授,博士,博导,主要从事工程结构振动控制研究(E-mail:zhangruifu@tongji.edu.cn);曹嫣如(1996-),女,江苏人,硕士生,主要从事工程结构振动控制研究(E-mail:1832596@tongji.edu.cn).

    通讯作者: 潘超(1985-),男,山东人,副教授,博士,硕导,主要从事工程结构振动控制研究(E-mail:panchao@ytu.edu.cn).
  • 中图分类号: TU352.11

摘要: 惯容是一种两端点加速度相关型新型结构控制元件。惯容减震(振)系统是包含惯容元件的结构振动控制系统。该文整理并总结了国内外学者在惯容及惯容减震(振)系统方面取得的大量研究成果,从惯容的实现机理、惯容减震(振)系统性能、惯容减震(振)结构体系的分析设计三个方面介绍、论述惯容的原理及其在减震(振)控制领域的发展历程与研究现状。相比于传统减震(振)系统,惯容减震(振)系统具有如下优势:能够实现惯性的灵活调整和频率的调节、改变结构惯性同时基本不改变结构的物理质量、提高惯容系统中消能器的耗能效率。该文旨在梳理惯容减震(振)系统的发展脉络与现状,为惯容减震(振)系统在结构振动控制中的应用提供理论依据和设计参考,以推进惯容减震(振)系统理论与实践的持续发展。

English Abstract

张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
引用本文: 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
ZHANG Rui-fu, CAO Yan-ru, PAN Chao. INERTER SYSTEM AND ITS STATE-OF-THE-ART[J]. Engineering Mechanics, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
Citation: ZHANG Rui-fu, CAO Yan-ru, PAN Chao. INERTER SYSTEM AND ITS STATE-OF-THE-ART[J]. Engineering Mechanics, 2019, 36(10): 8-27. doi: 10.6052/j.issn.1000-4750.2018.09.0496
参考文献 (134)

目录

    /

    返回文章
    返回