留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑频率参数协调的频率相关等效线性化方法

王笃国 赵成刚

王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
引用本文: 王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
Citation: WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471

考虑频率参数协调的频率相关等效线性化方法

doi: 10.6052/j.issn.1000-4750.2018.08.0471
基金项目: 中国地震局地震科技星火计划攻关项目(XH18060);国家重点研发计划项目(2017YFC1500403-07);国家自然科学基金项目(51478135)
详细信息
    作者简介:

    赵成刚(1955-),男,黑龙江人,教授,博士,博导,主要从事土动力学和防灾减灾研究(E-mail:cgzhao@bjtu.edu.cn).

    通讯作者: 王笃国(1979-),男,山东人,副研究员,博士,主要从事土动力学和场地地震反应分析方法研究(E-mail:wangduguo@163.com).
  • 中图分类号: P315.9

FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS

  • 摘要: 基于土动力试验呈现出的土体动参数频率相关特性,结合一维等效线性化理论,建立了能够考虑动三轴或共振柱测试频率Rf和波速测试频率fvs)相协调的频率相关等效线性化方法。首先,基于国内外不同学者的试验结果,回归建立了土体剪切模量-频率和阻尼比-频率关系式,推导得到了规准化频率相关土体剪切模量比和阻尼比随剪应变变化关系式;其次,对频率无关等效线性化方法进行了改进,传递函数采用频率相关的剪切模量和阻尼比,建立了频率相关的等效线性化方法;最后,采用频率相关和频率无关等效线性化方法,分别对单层覆盖层均质线性场地和单层覆盖层非线性场地进行了不同工况下的土层地震反应分析计算,计算结果表明:1)试验室土动力性能参数测试频率Rf对地震响应影响较大,波速测试频率fvs)影响较小;2)采用动三轴试验给出的土动参数,频率相关方法得到的结果略低于频率无关方法结果。采用共振柱试验给出的土动参数,频率相关方法得到的结果大幅高于频率无关方法结果。
  • [1] Chin B H, Aki K. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake:a preliminary result on pervasive nonlinear site effects[J]. Bulletin of the Seismological Society of America, 1991, 81(5):1859-1884.
    [2] Field E H, Johnson P A, Beresnev I A, et al. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake[J]. Nature, 1997, 390(6660):599-602.
    [3] Beresnev I A, Atkinson G M. Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. I. Validation on rock sites[J]. Bulletin of the Seismological Society of America, 1998, 88(6):1392-1401.
    [4] Kwok A O L, Stewart J P, Hashash Y M A. Nonlinear ground-response analysis of Turkey flat shallow stiff-soil site to strong ground motion[J]. Bulletin of the Seismological Society of America, 2008, 98(1):331-343.
    [5] Elia G, Rouainia M, Karofyllakis D, et al. Modelling the non-linear site response at the LSST down-hole accelerometer array in Lotung[J]. Soil Dynamics and Earthquake Engineering, 2017, 102:1-14.
    [6] Schnabel P B, Lysmer J, Seed H B. SHAKE:A computer program for earthquake response analysis of horizontally layered sites[R]. EERC Report 72-12, Berkeley, University of California, Berkeley, 1972.
    [7] Streeter V L, Wylie E B, Richart F E. Soil Motion computations by characteristics method[J]. ASCE Journal of the Geotechnical Engineering Division, 1974, 100(3):247-263.
    [8] Lee M K W, Finn W D L. DESRA-1 Program for the dynamic effective stress response analysis of soil deposits including liquefaction evaluation[R]. Soils Mechanics No. 36, Vancouner, Department of Civil Engineering, University of British Columbia, Canada, 1975.
    [9] Idriss I M, Dobry R M, Doyle E H, et al. Behavior of soft clays under earthquake loading conditions[C]. Houston, ASCE Offshore Technology Conference, 1976:605-616.
    [10] Joyner W B. A fortran program for calculating nonlinear seismic ground response[R]. Reston:US Geological Survey, 1977:77-671.
    [11] Lam I, Tsai C-F, Martin G R. Determination of site dependent spectra using nonlinear analysis[C]. San Francisco, Second International Conference on Microzonation, 1978:1089-1104.
    [12] Lee M K W, Finn W D L. DESRA-2:Dynamic effective stress response analysis of soil deposits with energy transmitting boundary including assessment of liquefaction potential[R]. Soils Mechanics No. 36, Vancouner:Department of Civil Engineering, University of British Columbia, Canada, 1975.
    [13] 李小军. 非线性土层地震反应分析的一种方法[J]. 华南地震, 1992, 12(4):1-8. Li Xiaojun. A method for analyzing seismic response of nonlinear soil layers[J]. South China Journal of Seismology, 1992, 12(4):1-8. (in Chinese)
    [14] Kausel E, Assimaki D. Seismic simulation of inelastic soils via frequency-dependent moduli and damping[J]. Journal of Engineering Mechanics, 2002, 128(1):34-47.
    [15] Yoshida N, Kobayashi S, Suetomi I. Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J]. Soil Dynamics and Earthquake Engineering, 2002, 22(3):205-222.
    [16] 蒋通, 邢海灵. 水平土层地震反应分析考虑频率相关性的等效线性化方法[J]. 岩土工程学报, 2007, 29:218-224. Jian Tong, Xing Hailing. An equivalent linear method considering frequency-dependent soil properties for seismic response analysis[J]. Chinese Journal of Geotechnical Engineering, 2007, 29:218-224. (in Chinese)
    [17] Park D P, Hashash Y M A. Rate-dependent soil behavior in seismic site response analysis[J]. Canadian Geotechnical Journal, 2008, 45(4):454-469.
    [18] 王伟, 刘必灯, 周正华, 等. 刚度和频率相关的等效线性化方法[J]. 岩土力学, 2010, 31:3928-3933. Wang Wei, Liu Bideng, Zhou Zhenghua, et al. Equivalent linear method considering frequency dependent stiffness and damping[J]. Rock and Soil Mechanics, 2010, 31(12):3928-3933. (in Chinese)
    [19] 袁晓铭, 李瑞山, 孙锐. 新一代土层地震反应分析方法[J]. 土木工程学报, 2016, 49(10):95-102. Yuan Xiaoming, Li Ruishan, Sun Rui. A new generation method for earthquake response analysis of soil layers[J]. China Civil Engineering Journal, 2016, 49(10):95-102. (in Chinese)
    [20] 张季, 梁建文, 巴振宁. 水平层状饱和场地地震响应分析的等效线性化方法[J]. 工程力学, 2016, 33(10):52-61. Zhang Ji, Liang Jianwen, Ba Zhenning. Equivalent linear analysis of seismic response of horizontally layered fluid-saturated poroelastic half-space[J]. Engineering Mechanics, 2016, 33(10):52-61. (in Chinese)
    [21] Huang D, Wang G, Wang C, et al. A modified frequency-dependent equivalent linear method for seismic site response analyses and model validation using kik-net borehole arrays[J]. Journal of Earthquake Engineering, 2018, 3:1-18.
    [22] Kim D S, Stokoe K H, Hudson W R. Deformational characteristics of soils at small to intermediate strains from cyclic tests[R]. Austin:University of Texas at Austin, 1991:73-80.
    [23] Shibuya S, Mitachi T, Fukuda F, et al. Strain rate effects on shear modulus and damping of normally consolidated clay[J]. Geotechnical Testing Journal, 1995, 18(3):365-375.
    [24] Darendeli M B. Development of a new family of normalized modulus reduction and material damping curves[D]. Austin:Department of Civil Engineering, University of Texas at Austin, 2001.
    [25] Rix G J, Meng J W. A non-resonance method for measuring dynamic soil properties[J]. Geotechnical Testing Journal, 2005, 28(1):1-8.
    [26] Meng J W, Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
    [27] Khan Z H, Cascante G, El Naggar M H, et al. Measurement of frequency-dependent dynamic properties of soils using the resonant-column device[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(9):1319-1326.
    [28] 黎冰, 高玉峰, 丰土根. 振动频率对LCES动力特性的影响分析及其机理初探[J]. 岩土力学, 2008, 29(10):2731-2734. Li Bin, Gao Yufeng, Feng Yugen. Cyclic loading frequency effect and mechanism of lightweight clay-EPS beads soil[J]. Rock and Soil Mechanics, 2008, 29(10):2731-2734. (in Chinese)
    [29] 徐学燕, 陈亚明. 冻土的动力特性研究及其参数确定[J]. 岩土工程学报, 1998, 20(5):77-81. Xu Xueyan, Chen Yaming. Research on dynamic characters of frozen soil and determination of its parameters[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5):77-81. (in Chinese)
    [30] 李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究[J]. 岩土工程学报, 2017, 39(1):71-80. Li Ruishan, Chen Longwei, Yuan Xiaoming, et al. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1):71-80. (in Chinese)
    [31] 卢啸, 陆新征, 李梦珂, 等. 地震作用设计参数调整对框架结构抗震设计及安全性的影响[J]. 工程力学, 2017, 34(4):22-31. Lu Xiao, Lu Xinzheng, Li Mengke, et al. Influence of seismic action adjustments on seismic design and safety of RC frames[J]. Engineering Mechanics, 2017, 34(4):22-31. (in Chinese)
    [32] 朱志辉, 杨乐, 王力东, 等. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4):78-87. Zhu Zhihui, Yang Le, Wang Lidong, et al. Dynamic responses and train running safety of railway cable-stayed bridge under earthquakes[J]. Engineering Mechanics, 2017, 34(4):78-87. (in Chinese)
    [33] Kiani J, Pezeshk S. Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions[J]. Earthquake Engineering & Structural Dynamics, 2017, 46(15):2739-2755.
    [34] 孙小云, 韩建平, 党育, 等. 地震动持时对考虑梁柱节点区不同破坏模式RC框架的地震易损性影响[J]. 工程力学, 2018, 35(5):193-203. Sun Xiaoyun, Han Jianping, Dang Yu, et al. Effect of ground motion duration on seismic fragility of RC frames with different beam-column joint failure modes[J]. Engineering Mechanics, 2018, 35(5):193-203. (in Chinese)
    [35] 张锐, 成虎, 吴浩, 等. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6):162-172. Zhang Rui, Cheng Hu, Wu Hao, et al. Multi-band matching method for selection of group motions in time-history analysis considering higher modes effects[J]. Engineering Mechanics, 2018, 35(6):162-172. (in Chinese)
    [36] Molazadeh M, Saffari H. The effects of ground motion duration and pinching-degrading behavior on seismic response of SDOF systems[J]. Soil Dynamics and Earthquake Engineering, 2018, 114:333-347.
    [37] Safak E. Discrete-time analysis of seismic site amplification[J]. Journal of Engineering Mechanics, 1995, 121(7):801-809.
    [38] 廖振鹏. 地震小区划-理论与实践[M]. 北京:地震出版社, 1989:134-140. Liao Zhenpeng. Seismic microzonation:theory and practice[M]. Beijing:Seismological Press, 1989:134-140. (in Chinese)
    [39] Meng J. Earthquake ground motion simulation with frequency-dependent soil properties[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(3):234-241.
    [40] Pacific Earthquake Engineering Research Center. PEER Ground Motion Database[DB]. http://ngawest2.berkeley.edu/.2017-06-28.
  • [1] 彭云强, 蔡力勋, 韦利明.  基于等效能量原理的延性材料J (δ)阻力曲线测试新方法研究 . 工程力学, 2020, 37(): 1-5. doi: 10.6052/j.issn.1000-4750.2019.11.0706
    [2] 郭立平, 余志祥, 骆丽茹, 齐欣, 赵世春.  基于力流等效的环形网顶破力学行为解析方法 . 工程力学, 2020, 37(5): 129-139. doi: 10.6052/j.issn.1000-4750.2019.07.0345
    [3] 徐华, 邓鹏, 蓝淞耀, 刘祖容, 杨绿峰.  曲线裂纹裂尖SIFs等效分析的广义参数Williams单元确定方法 . 工程力学, 2020, 37(6): 34-41. doi: 10.6052/j.issn.1000-4750.2019.08.0455
    [4] 方东平, 李全旺, 李楠, 王飞, 刘影, 顾栋炼, 孙楚津, 潘胜杰, 侯冠杰, 汪飞, 陆新征.  社区地震安全韧性评估系统及应用示范 . 工程力学, 2020, 37(): 1-10. doi: 10.6052/j.issn.1000-4750.2019.11.0670
    [5] 白久林, 陈辉明, 孙博豪, 金双双.  RC框架结构地震均匀损伤优化设计 . 工程力学, 2020, 37(): 1-10. doi: 10.6052/j.issn.1000-4750.2019.10.0572
    [6] 李忠学, 胡万波.  用于光滑/非光滑壳的稳定化新型协同转动4节点四边形壳单元 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.10.0611
    [7] 张海, 杜雪姣, 刘中宪, 徐颖, 杨国岗.  平面SV波入射下山体地形中双线隧道动力响应 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.07.0404
    [8] 巴振宁, 张家玮, 梁建文, 吴孟桃.  地震波斜入射下层状TI饱和场地地震反应分析 . 工程力学, 2020, 37(5): 166-177. doi: 10.6052/j.issn.1000-4750.2019.07.0363
    [9] 王斌, 孙勇峰, 霍光, 杨倩.  型钢混凝土框架柱等效塑性铰长度研究 . 工程力学, 2020, 37(5): 112-119. doi: 10.6052/j.issn.1000-4750.2019.06.0333
    [10] 闫维明, 王宝顺, 何浩祥.  并联式单向单颗粒阻尼器力学模型及优化分析 . 工程力学, 2020, 37(): 1-13. doi: 10.6052/j.issn.1000-4750.2019.08.0487
    [11] 付伟庆, 李茂, 李通, 张春巍.  多阶梯被动变阻尼装置设计、试验及结构风振控制分析 . 工程力学, 2020, 37(6): 225-233. doi: 10.6052/j.issn.1000-4750.2019.09.0523
    [12] 祁文睿, 潘旦光, 高永涛, 付相球.  滞后阻尼体系地震反应的中心差分虚初始条件法 . 工程力学, 2020, 37(): 1-9. doi: 10.6052/j.issn.1000-4750.2019.10.0596
    [13] 刘晓刚, 樊健生, 聂建国.  剪切型消能连梁的循环屈曲特性研究 . 工程力学, 2020, 37(7): 1-10. doi: 10.6052/j.issn.1000-4750.2019.08.0426
    [14] 金浏, 蒋轩昂, 杜修力.  轻骨料无腹筋混凝土梁剪切破坏及尺寸效应:细观模拟 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.05.0253
    [15] 王慧, 王乐, 田润泽.  基于时域响应相关性分析及数据融合的结构损伤检测研究 . 工程力学, 2020, 37(): 1-9. doi: 10.6052/j.issn.1000-4750.2019.10.0588
    [16] 何文福, 曾一峰, 许浩, 刘文光, 冯德民.  锥形非固结隔震支座理论模型参数试验研究及其结构地震响应分析 . 工程力学, 2020, 37(5): 217-227. doi: 10.6052/j.issn.1000-4750.2019.07.0410
    [17] 席仁强, 许成顺, 杜修力, 许坤.  风-波浪荷载对海上风机地震响应的影响 . 工程力学, 2020, 37(): 1-7. doi: 10.6052/j.issn.1000-4750.2019.12.0715
    [18] 赵密, 王鑫, 钟紫蓝, 杜修力.  P波斜入射下非基岩场地中核岛结构地震响应规律研究 . 工程力学, 2020, 37(): 1-6. doi: 10.6052/j.issn.1000-4750.2019.12.0744
    [19] 李玉刚, 范峰, 洪汉平.  基于小样本记录的柱面网壳结构地震响应评估 . 工程力学, 2020, 37(5): 228-236. doi: 10.6052/j.issn.1000-4750.2019.07.0418
    [20] 钟文坤, 吴玖荣.  内置有挡板的矩形水箱阻尼比估算方法比较分析 . 工程力学, 2020, 37(6): 100-109. doi: 10.6052/j.issn.1000-4750.2019.07.0422
  • 加载中
计量
  • 文章访问数:  54
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-12-17
  • 刊出日期:  2019-09-25

考虑频率参数协调的频率相关等效线性化方法

doi: 10.6052/j.issn.1000-4750.2018.08.0471
    基金项目:  中国地震局地震科技星火计划攻关项目(XH18060);国家重点研发计划项目(2017YFC1500403-07);国家自然科学基金项目(51478135)
    作者简介:

    赵成刚(1955-),男,黑龙江人,教授,博士,博导,主要从事土动力学和防灾减灾研究(E-mail:cgzhao@bjtu.edu.cn).

    通讯作者: 王笃国(1979-),男,山东人,副研究员,博士,主要从事土动力学和场地地震反应分析方法研究(E-mail:wangduguo@163.com).
  • 中图分类号: P315.9

摘要: 基于土动力试验呈现出的土体动参数频率相关特性,结合一维等效线性化理论,建立了能够考虑动三轴或共振柱测试频率Rf和波速测试频率fvs)相协调的频率相关等效线性化方法。首先,基于国内外不同学者的试验结果,回归建立了土体剪切模量-频率和阻尼比-频率关系式,推导得到了规准化频率相关土体剪切模量比和阻尼比随剪应变变化关系式;其次,对频率无关等效线性化方法进行了改进,传递函数采用频率相关的剪切模量和阻尼比,建立了频率相关的等效线性化方法;最后,采用频率相关和频率无关等效线性化方法,分别对单层覆盖层均质线性场地和单层覆盖层非线性场地进行了不同工况下的土层地震反应分析计算,计算结果表明:1)试验室土动力性能参数测试频率Rf对地震响应影响较大,波速测试频率fvs)影响较小;2)采用动三轴试验给出的土动参数,频率相关方法得到的结果略低于频率无关方法结果。采用共振柱试验给出的土动参数,频率相关方法得到的结果大幅高于频率无关方法结果。

English Abstract

王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
引用本文: 王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
Citation: WANG Du-guo, ZHAO Cheng-gang. FREQUENCY-DEPENDENT EQUIVALENT LINEAR METHOD FOR SEISMIC SITE RESPONSE CONSIDERING THE COMPATIBILITY OF FREQUENCY PARAMETERS[J]. Engineering Mechanics, 2019, 36(9): 169-179. doi: 10.6052/j.issn.1000-4750.2018.08.0471
参考文献 (40)

目录

    /

    返回文章
    返回