留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析

陈林雅 郑东生 王盼娣 祝兵

陈林雅, 郑东生, 王盼娣, 祝兵. 基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析[J]. 工程力学, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
引用本文: 陈林雅, 郑东生, 王盼娣, 祝兵. 基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析[J]. 工程力学, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
CHEN Lin-ya, ZHENG Dong-sheng, WANG Pan-di, ZHU Bing. ANALYSIS OF WAVE FORCE ACTING ON THE MONOPILE BASED ON WAVE-POROUS SEABED-STRUCTURE COUPLED MODEL[J]. Engineering Mechanics, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
Citation: CHEN Lin-ya, ZHENG Dong-sheng, WANG Pan-di, ZHU Bing. ANALYSIS OF WAVE FORCE ACTING ON THE MONOPILE BASED ON WAVE-POROUS SEABED-STRUCTURE COUPLED MODEL[J]. Engineering Mechanics, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455

基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析

doi: 10.6052/j.issn.1000-4750.2018.08.0455
基金项目: 国家自然科学基金项目(41176073,51178397)
详细信息
    作者简介:

    陈林雅(1990-),女,河南人,博士生,主要从事桥梁基础流固土耦合动力学及长期服役安全控制研究(E-mail:chenlinya01@yeah.net);王盼娣(1994-),女,河南人,硕士生,主要从事桥梁结构动力学及桥梁风浪耦合动力学研究(E-mail:15736874161@163.com);祝兵(1965-),男,江苏人,教授,博士,博导,主要从事桥梁结构动力学及桥梁风浪耦合动力学研究(E-mail:zhubing126@126.com).

    通讯作者: 郑东生(1964-),男,澳大利亚人,教授,博士,博导,主要从事波浪-海床-结构物相互作用理论研究(E-mail:dsjeng@home.swjtu.edu.cn).
  • 中图分类号: P751

ANALYSIS OF WAVE FORCE ACTING ON THE MONOPILE BASED ON WAVE-POROUS SEABED-STRUCTURE COUPLED MODEL

  • 摘要: 为了研究波浪作用下多孔介质海床特性和结构物埋深及施工下放速度等因素对结构物所受波浪力的影响,采用修正RANS方程和Forchheimer饱和阻力模型控制流体流动,流体体积法(VOF)追踪自由液面,并采用κ-ε闭合方程进行求解,建立波浪-多孔介质海床-结构物相互作用研究的三维耦合数值分析模型。首先,进行数值模型的验证分析,包含多孔介质海床对波浪传播的衰减效应,波浪作用下结构物周围湍流流动以及海床多孔特性条件下WAVE FORCES结构物所受波浪力。然后,进行结构物所受水平波浪力影响因素的参数分析,主要包含波浪条件,多孔介质海床特性及结构物特性三个方面。结果表明:将多孔介质海床简化为刚性不可渗固体而忽视海床多孔特性,会低估结构物所受的波浪力数值;大波高长周期波浪作用下,深水结构物所受波浪力较大;海床孔隙率、颗粒直径、海床厚度显著影响结构物所受波浪力;同时,结构物直径、截面形式、埋置深度及其施工下放速度v等结构物特性对波浪力的影响同样显著。因此,工程实践中,应同时考虑波浪条件、多孔海床特性和结构物埋置深度及动态运动过程,合理计算结构物所受波浪力数值,以指导结构设计和施工。
  • [1] 王伟, 杨敏. 海上风电机组地基基础:设计理论与工程应用[M]. 北京:中国建筑工业出版社, 2014. Wang Wei, Yang Min. Foundation of offshore wind turbine:design theory and engineering application[M]. Beijing:China Architecture & Building Press, 2014. (in Chinese)
    [2] Sumer B M and Fredsøe J. The mechanism of scour in the marine environment[M]. New Jersey:World Scientific, 2002:536-539.
    [3] 赵刚. 胜利作业三号平台"9.7"倾斜事故分析[J]. 现代职业安全, 2011, 119(7):100-102. Zhao Gang. Case study about ‘9.7’ inclination of the Shengli No.3 work platform[J]. Mordern Occupation Safety, 2011, 119(7):100-102. (in Chinese)
    [4] Losada I J, Lara J L, Jesus M D. Modeling the interaction of water waves with porous coastal structures[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(6):1-18.
    [5] Liu P F. Damping of water waves over porous bed[J]. Journal of the Hydraulics Division, 1973, 99:2263-2271.
    [6] Savage R P. Laboratory study of energy losses by bottom friction and percolation[J]. Beach Erosion Board, Corps of Engineers, Technical Memorandum, 1953, (31):1-25.
    [7] Liu P L F, Dalrymple R A. The damping of gravity waves due to percolation[J]. Coastal Engineering, 1984, 8(1):33-49.
    [8] Karunarathna S, Lin P. Numerical simulation of wave damping over porous seabeds[J]. Coastal Engineering, 2006, 53(10):845-855.
    [9] Biot M A. Theory of deformation of a porous viscoelastic anisotropic solid[J]. Journal of Applied Physics, 1955, 27(5):459-467.
    [10] Jeng D S, Cha D H. Effects of dynamic soil behavior and wave non-linearity on the wave induced pore pressure and effective stresses in porous seabed[J]. Ocean Engineering, 2003, 30(16), 2065-2089.
    [11] Jeng D S, Ye J H, Zhang J S, et al. An integrated model for the wave-induced seabed response around marine structures:model verifications and applications[J]. Coastal Engineering, 2013, 72:1-19.
    [12] Liu B, Jeng D S, Ye G L, et al. Laboratory study for pore pressures in sandy deposit under wave loading[J]. Ocean Engineering, 2015, 106:207-219.
    [13] Duan L L, Liao C C, Jeng D S, et al. 2D numerical study of wave and current-induced oscillatory non-cohesive soil liquefaction around a partially buried pipeline in a trench[J]. Ocean Engineering, 2017, 135:39-51.
    [14] Morison J R, Obrien M P, Johnson J W, et al. The force exerted by surface waves on piles[J]. Petroleum Transactions, AIME, 1950, 189:149-154.
    [15] Maccamy R C, Fuchs R A. Wave forces on piles:A diffraction theory[M]. Washington DC US Army:Beach Erosion Board, Technical Memorandum, 1954:100-103.
    [16] 贺五洲, 耿进柱. 求解三维物体波浪荷载的边界元模型[J]. 工程力学, 2005, 22(2):11-15. He Wuzhou, Geng Jinzhu. A boundary element model for calculating wave forces on 3-D bodies[J]. Engineering Mechanics, 2005, 22(2):11-15. (in Chinese)
    [17] 康啊真, 祝兵, 邢帆, 等. 超大型结构物受波浪力作用的数值模拟[J]. 工程力学, 2014, 31(8):108-115. Kang Azhen, Zhu Bing, Xing Fan, et al. Numerical simulation of wave forces on very large structures[J]. Engineering Mechanics, 2014, 31(8):108-115. (in Chinese)
    [18] 滕家斌. 琅岐闽江大桥4号墩单壁钢吊箱围堰施工技术[J]. 世界桥梁, 2012, 40(5):37-40. Teng Jiabin. Construction technique of single-wall steel boxed cofferdam for No.4 pier of Minjiang river bridge in Langqi town[J]. World Bridges, 2012, 40(5):37-40. (in Chinese)
    [19] 陈林雅, 廖晨聪, 段伦良, 郑东生. 多孔介质海床对单桩所受波浪力的影响分析[J]. 西南交通大学学报, 2019, 54(2):328-335. Chen Linya, Liao chencong, Duan Lunliang, Zheng Dongsheng. Influence of porous seabed characteristics on wave forces acting on monopile[J]. Journal of Southwest Jiaotong University, 2019, 54(2):328-335. (in Chinese)
    [20] 陈林雅, 廖晨聪, 段伦良, 郑东生. 波浪-多孔介质海床-单桩相互作用数值分析[C]. 北京:中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集(A), 2017:1-13. Chen Linya, Liao chencong, Duan Lunliang, Zheng Dongsheng. Numerical study of the wave-porous seabed-monopile-interaction[C]. Beijing:The Chinese Congress of Theoretical and Applied Mechanics-2017 The Paper Collection Celebrating the 60th Anniversary of the Founding of the Chinese Society of Theoretical and Applied Mechanics(A), 2017:1-13. (in Chinese)
    [21] Chakrabarti S K. Offshore structure modeling[M]. Singapore:World Scientific Publishing, 1994.
    [22] Boussinesq J. Theory of wave and swells propagated in long horizontal rectangular canal and imparting to the liquid contained in this canal[J]. Journal de Mathematiques Pures et Appliquees, 1872, 17(2):55-108.
    [23] Rodi W. Turbulence models and their application in hydraulics:a state of the art review[M]. 3rd ed. The Netherlands:Balkema, Rotterdam, 1984.
    [24] Launder B E, Spalding D B. The numerical computation of turbulence flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974(3):269-289.
    [25] 张文娟, 王媛, 倪小东. Forchheimer型非达西渗流参数特征分析[J]. 水电能源科学, 2014(1):52-54, 164. Zhang Wenjuan, Wang Yuan, Ni Xiaodong. Analysis of parameters characteristics of forchheimer's non-darcy seepage[J]. Water Resources and Power, 2014(1):52-54, 164. (in Chinese)
    [26] Dean R G. Relative validation of water wave theories[J]. Journal of the waterways, Harbors and coastal engineering division, 1970, 96(1):105-119.
    [27] Fenton J D. A fifth-order stokes theory for steady waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1985, 111(2):216-234.
    [28] Orlansk I A. Simple boundary condition for unbounded hyperbolic flows[J]. Journal of Computational Physics, 1976, 21(3):251-269.
    [29] Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981(39):201-225.
    [30] Sawaragi T, Deguchi I. Waves on permeable layers[J]. Coastal Engineering, 2012, (1), 1517-1530.
    [31] Mo W H, Irschik K, Oumeraci H, et al. A 3D numerical model for computing non-breaking wave forces on slender piles[J]. Journal Engineering Mathematics, 2007, 58(1/2/3/4):19-30.
    [32] JTS 145-2015, 港口与航道水文规范[S]. 北京:人民交通出版社, 2015. JTS 145-2015, Code of hydrology for harbour and waterway[S]. BeiJing:China Communications Press, 2015. (in Chinese)
  • [1] 季新然, 邹丽, 柳淑学, 王道儒.  多向不规则波浪作用下群墩结构所受波浪力的实验研究 . 工程力学, 2019, 36(10): 238-243. doi: 10.6052/j.issn.1000-4750.2018.07.0399
    [2] 李志远, 李建波, 林皋, 韩泽军.  饱和层状地基条形基础动刚度的精细积分算法 . 工程力学, 2018, 35(6): 15-23. doi: 10.6052/j.issn.1000-4750.2017.03.0170
    [3] 张大峰, 杨军, 李连友, 沈兆普.  考虑膨胀土地基膨胀率和刚度沿深度变化的桩-土共同作用解析解 . 工程力学, 2016, 33(12): 86-93. doi: 10.6052/j.issn.1000-4750.2015.04.0279
    [4] 金浏, 杜修力, 张仁波.  荷载作用下饱和水泥浆体中氯离子扩散性能研究 . 工程力学, 2015, 32(6): 33-40. doi: 10.6052/j.issn.1000-4750.2013.12.1163
    [5] 柳国环, 练继建, 燕翔.  差动和波浪力激励下海床-桩-墩-桥的地震弹塑性:原理、方法、程序与智能建模 . 工程力学, 2015, 32(6): 133-140. doi: 10.6052/j.issn.1000-4750.2013.12.1148
    [6] 俞缙, 穆康, 李宏, 蔡燕燕, 张亚洲.  砂岩渗透性演化特性的孔隙率分布细观模拟分析 . 工程力学, 2014, 31(11): 124-131. doi: 10.6052/j.issn.1000-4750.2013.05.0443
    [7] 康啊真, 祝兵, 邢帆, 韩兴.  超大型结构物受波浪力作用的数值模拟 . 工程力学, 2014, 31(8): 108-115. doi: 10.6052/j.issn.1000-4750.2013.03.0151
    [8] 严开, 邹志利, 李献丽.  不同二阶绕射波浪力理论公式的结果互比 . 工程力学, 2013, 30(4): 28-34. doi: 10.6052/j.issn.1000-4750.2011.12.0833
    [9] 李西斌, 陈伟丽, 陈福全, 姚金梅.  饱和松砂与结构接触面反复剪切下邻近土体性状数值分析 . 工程力学, 2013, 30(6): 223-230. doi: 10.6052/j.issn.1000-4750.2012.02.0122
    [10] 马宗源, 徐清清, 党发宁.  碎石土地基动力夯实的颗粒流离散元数值分析 . 工程力学, 2013, 30(增刊): 184-190. doi: 10.6052/j.issn.1000-4750.2012.04.S051
    [11] 金浏, 杜修力.  孔隙率变化规律及其对混凝土变形过程的影响 . 工程力学, 2013, 30(6): 183-190. doi: 10.6052/j.issn.1000-4750.2012.02.0068
    [12] 杜修力 金 浏.  考虑过渡区界面影响的混凝土宏观力学性质研究 . 工程力学, 2012, 29(12): 72-79. doi: 10.6052/j.issn.1000-4750.2011.04.0216
    [13] 黄华贵, 杜凤山, 许志强.  大锻件内部疏松缺陷锻造压实过程FEM分析 . 工程力学, 2011, 28(9): 245-250.
    [14] 张永利, 李 杰.  波浪作用下二维海床土体位移分布研究 . 工程力学, 2010, 27(6): 72-076.
    [15] 李志军, Devinder S Sodhi, 卢鹏.  渤海海冰工程设计参数分布 . 工程力学, 2006, 23(6): 167-172.
    [16] 夏昌敬, 谢和平, 鞠杨, 周宏伟.  冲击载荷下孔隙岩石能量耗散的实验研究 . 工程力学, 2006, 23(9): 1-5.
    [17] 王栋, 栾茂田.  波浪作用下粘弹性海床动力响应的数值分析 . 工程力学, 2002, 19(4): 130-134.
    [18] 吴梦喜, 楼志刚.  波浪作用下海床的稳定性与液化分析 . 工程力学, 2002, 19(5): 97-102.
    [19] 黄晨光, 段祝平, 吴承康.  热喷涂构件中残余应力的理论分析 . 工程力学, 2002, 19(4): 135-140.
    [20] 毕家驹, 刘永仁, 陈卫, 张燕.  海洋平台对随机非线性波浪力的动力响应 . 工程力学, 1986, 3(3): 106-114.
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  6
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-16
  • 修回日期:  2018-11-19
  • 刊出日期:  2019-11-25

基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析

doi: 10.6052/j.issn.1000-4750.2018.08.0455
    基金项目:  国家自然科学基金项目(41176073,51178397)
    作者简介:

    陈林雅(1990-),女,河南人,博士生,主要从事桥梁基础流固土耦合动力学及长期服役安全控制研究(E-mail:chenlinya01@yeah.net);王盼娣(1994-),女,河南人,硕士生,主要从事桥梁结构动力学及桥梁风浪耦合动力学研究(E-mail:15736874161@163.com);祝兵(1965-),男,江苏人,教授,博士,博导,主要从事桥梁结构动力学及桥梁风浪耦合动力学研究(E-mail:zhubing126@126.com).

    通讯作者: 郑东生(1964-),男,澳大利亚人,教授,博士,博导,主要从事波浪-海床-结构物相互作用理论研究(E-mail:dsjeng@home.swjtu.edu.cn).
  • 中图分类号: P751

摘要: 为了研究波浪作用下多孔介质海床特性和结构物埋深及施工下放速度等因素对结构物所受波浪力的影响,采用修正RANS方程和Forchheimer饱和阻力模型控制流体流动,流体体积法(VOF)追踪自由液面,并采用κ-ε闭合方程进行求解,建立波浪-多孔介质海床-结构物相互作用研究的三维耦合数值分析模型。首先,进行数值模型的验证分析,包含多孔介质海床对波浪传播的衰减效应,波浪作用下结构物周围湍流流动以及海床多孔特性条件下WAVE FORCES结构物所受波浪力。然后,进行结构物所受水平波浪力影响因素的参数分析,主要包含波浪条件,多孔介质海床特性及结构物特性三个方面。结果表明:将多孔介质海床简化为刚性不可渗固体而忽视海床多孔特性,会低估结构物所受的波浪力数值;大波高长周期波浪作用下,深水结构物所受波浪力较大;海床孔隙率、颗粒直径、海床厚度显著影响结构物所受波浪力;同时,结构物直径、截面形式、埋置深度及其施工下放速度v等结构物特性对波浪力的影响同样显著。因此,工程实践中,应同时考虑波浪条件、多孔海床特性和结构物埋置深度及动态运动过程,合理计算结构物所受波浪力数值,以指导结构设计和施工。

English Abstract

陈林雅, 郑东生, 王盼娣, 祝兵. 基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析[J]. 工程力学, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
引用本文: 陈林雅, 郑东生, 王盼娣, 祝兵. 基于波浪-多孔介质海床-结构物耦合模型的单桩基础波浪力分析[J]. 工程力学, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
CHEN Lin-ya, ZHENG Dong-sheng, WANG Pan-di, ZHU Bing. ANALYSIS OF WAVE FORCE ACTING ON THE MONOPILE BASED ON WAVE-POROUS SEABED-STRUCTURE COUPLED MODEL[J]. Engineering Mechanics, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
Citation: CHEN Lin-ya, ZHENG Dong-sheng, WANG Pan-di, ZHU Bing. ANALYSIS OF WAVE FORCE ACTING ON THE MONOPILE BASED ON WAVE-POROUS SEABED-STRUCTURE COUPLED MODEL[J]. Engineering Mechanics, 2019, 36(11): 72-82. doi: 10.6052/j.issn.1000-4750.2018.08.0455
参考文献 (32)

目录

    /

    返回文章
    返回