留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大型水平轴风力机新型叶片结构设计思想和研究进展

杨阳 曾攀 雷丽萍

杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
引用本文: 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
Citation: YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04

大型水平轴风力机新型叶片结构设计思想和研究进展

doi: 10.6052/j.issn.1000-4750.2018.06.ST04
基金项目: 国家自然科学基金项目(51575296)
详细信息
    作者简介:

    杨阳(1990-),男,广东人,博士生,从事新型风机叶片设计分析研究(E-mail:yangyang13@mails.tsinghua.edu.cn);曾攀(1963-),男,海南人,教授,博士,博导,从事计算力学、结构设计、数值模拟研究(E-mail:zengp@mail.tsinghua.edu.cn).

    通讯作者: 雷丽萍(1968-),女,广西人,副教授,博士,博导,从事材料加工、数值模拟、结构设计研究(E-mail:leilp@mail.tsinghua.edu.cn).
  • 中图分类号: TM315

CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE

  • 摘要: 该文首先阐释了在风力机大型化发展过程中叶片结构设计的主要问题在于大型叶片对综合结构性能的高要求与轻量化、气动性能之间的矛盾,传统悬臂梁结构叶片的承载特性限制了叶片进一步大型化发展的空间,新型叶片结构的设计开发是解决这一问题的有效手段。新型叶片结构的设计思想按其着眼点主要包括仿生柔性设计思想、分段设计思想和局部附加结构的设计思想等。在此基础上,该文综述了近年来新型叶片结构的研究进展,为大型叶片结构设计提供了参考。
  • [1] World Wind Energy Association. Wind power capacity worldwide reaches 600 GW, 53.9 GW added in 2018[EB/OL]. https://wwindea.org/blog/2019/02/25/windpower-capacity-worldwide-reaches-600-gw-539-gw-added-in-2018,2019-02-25.
    [2] Jamieson P. Innovation in wind turbine design[M]. Chichester:Wiley, 2011:75-104.
    [3] Griffith D T, Ashwill T D. The sandia 100-meter all-glass baseline wind turbine blade:SNL100-00[R]. Albuquerque:Sandia National Laboratories, 2011.
    [4] Fichaux N, Beurskens J, Jensen P H, et al. Design limits and solutions for very large wind turbines:A 20 MW turbine is feasible[R]. Brussels:European Wind Energy Association, 2011.
    [5] Ichter B, Steele A, Loth E, et al. Structural design and analysis of a segmented ultralight morphing rotor (SUMR) for extreme-scale wind turbines[C]//42nd AIAA Fluid Dynamics Conference and Exhibit. New Orleans:AIAA, 2012:3270.
    [6] Loth E, Steele A, Ichter B, et al. Segmented ultralight pre-aligned rotor for extreme-scale wind turbines[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville:AIAA, 2012:1290.
    [7] Barlas T K, van Kuik G A. Review of state of the art in smart rotor control research for wind turbines[J]. Progress in Aerospace Sciences, 2010, 46(1):1-27.
    [8] Konga C, Banga J, Sugiyamab Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life[J]. Energy, 2005, 30(11/12):2101-2114.
    [9] Coxa K, Echtermeyerb A. Structural design and analysis of a 10 MW wind turbine blade[J]. Energy Procedia, 2012. 24:194-201.
    [10] Chen J, Wang Q, Shen W Z, et al. Structural optimization study of composite wind turbine blade[J]. Materials & Design, 2013, 46:247-255.
    [11] Liao C C, Zhao X L, Xu J Z. Blade layers optimization of wind turbines using FAST and improved PSO Algorithm[J]. Renewable Energy, 2012, 42:227-233.
    [12] Fischer G R, Kipouros T, Savill A M. Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables[J]. Renewable Energy, 2014, 62:506-515.
    [13] Sharifi A, Nobari M R H. Prediction of optimum section pitch angle distribution along wind turbine blades[J]. Energy Conversion and Management, 2013, 67:342-350.
    [14] Mishnaevsky Jr L. Composite materials in wind energy technology[M/OL]//Favorsky O N. Thermal to Mechanical Energy Conversion:Engines and Requirements. Oxford:EOLSS, 2011. https://www.eolss.net/samplechapters/C08/E3-11-42.pdf.2018-09-10
    [15] Prabhakaran R T D. Future materials for wind turbine blades-a critical review[C]//Proceedings of the International Conference on Wind Energy:Materials, Engineering and Policies. Andhra Pradesh:DTU, 2012:1-8.
    [16] Liu W Y, Platts M J. Concept representation, practical topology decision and analysis in composites lug design[C]//Proceedings of the International Conference on Frontiers of Design and Manufacturing. Tianjin:ICFDM, 2008:636-643.
    [17] Le Gourieres D. Wind power plants:theory and design[M]. Oxford:Elsevier, 2014.
    [18] Lobitz D W, Veers P S, Eisler G R, et al. The use of twist-coupled blades to enhance the performance of horizontal axis wind turbines[R]. Albuquerque:Sandia National Laboratories, 2001.
    [19] Aziz S, Gale J, Ebrahimpour A, et al. Passive control of a wind turbine blade using composite material[C]//Proceedings of the ASME 2011 International Mechanical Engineering Congress & Exposition. Denver:ASME, 2011:467-476.
    [20] Bottasso C L, Campagnolo F, Croce A, et al. Optimization-based study of bend-twist coupled rotor blades for passive and integrated passive/active load alleviation[J]. Wind Energy, 2013, 16:1149-1166.
    [21] Rasmussen F, Petersen J T, Vølund P, et al. Soft rotor design for flexible turbines:final report[R]. Roskilde:Risø National Laboratory, 1998.
    [22] Steele A, Ichter B, Qin C, et al. Aerodynamics of an ultralight load-aligned rotor for extreme-scale wind turbines[R]. Golden:National Renewable Energy Lab.(NREL), 2013.
    [23] Gu R, Xu J L, Yang Y B. The Investigation of the Small Bionic Wind Turbine Based on the Seagull Airfoil[J]. Advanced Materials Research, 2011, 347:3533-3539.
    [24] Zhang R K, Wu J Z. Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge[J]. Wind Energy, 2012, 15(3):407-424.
    [25] Liu T, Kuykendoll K, Rhew R, et al. Avian Wing Geometry and Kinematics[J]. AIAA Journal, 2006, 44(5):954-963.
    [26] Liu Wangyu, Jiaxing Gong. Adaptive bend-torsional coupling wind turbine blade design imitating the topology structure of natural plant leaves[M]//Al-Bahadly I H. Wind Turbines. Rijeka:InTech, 2011:51-86.
    [27] Linscott B S, Dennett J T, Gordon L H. The Mod-2 wind turbine development project[R]. Washington:US Department of Energy, 1981.
    [28] Xie W, Zeng P, Lei L. A novel folding blade of wind turbine rotor for effective power control[J]. Energy Conversion and Management, 2015, 101:52-65.
    [29] Dawson M H. Variable Length Wind Turbine Blade[R]. Boise:Energy Unlimited, Inc. 2006.
    [30] Lu H, Zeng P, Lei L, et al. A smart segmented blade system for reducing weight of the wind turbine rotor[J]. Energy Conversion and Management, 2014, 88:535-544.
    [31] Roth Johnson P, Wirz R E. Aero-structural investigation of biplane wind turbine blades[J]. Wind Energy, 2014, 17(3):397-411.
    [32] Migliore P G, Miller L, Quandt G. Wind turbine trailing edge aerodynamic brakes[R]. Golden:National Renewable Energy Laboratory, 1995.
    [33] Miller S. Experimental investigation of aerodynamic devices for wind turbine rotational speed control:Phase Ⅱ[R]. Golden:National Renewable Energy Laboratory, 1996.
    [34] Stuart J G, Wright A D, Butterfield C P. Considerations for an integrated wind turbine controls capability at the National Wind Technology Center:an aileron control case study for power regulation and load mitigation[R]. Golden:National Renewable Energy Laboratory, 1996.
    [35] Lachenal X, Daynes S, Weaver P M. A zero torsional stiffness twist morphing blade as a wind turbine load alleviation device[J]. Smart Materials and Structures. 2013, 22(6):065016.
    [36] Gaunaa M, Zahle F, Sørensen N N, et al. Quantification of the Effects of Using Slats on the Inner Part of a 10 MW Rotor[C]//Proceedings of EWEA 2012-European Wind Energy Conference & Exhibition. Copenhagen:European Wind Energy Association (EWEA), 2012:919-930.
    [37] Ragheb A, Selig M. Multi-element airfoil configurations for wind turbines[C]//29th AIAA Applied Aerodynamics Conference. Honolulu:American Institute of Aeronautics and Astronautics (AIAA), 2011:3971.
    [38] Narsipur S, Pomeroy B, Selig M. CFD Analysis of multielement airfoils for wind turbines[C]//30th AIAA Applied Aerodynamics Conference. New Orleans:American Institute of Aeronautics and Astronautics (AIAA), 2012:2781.
  • [1] 张照煌, 李魏魏.  座头鲸胸鳍前缘仿生叶片空气动力学特性研究 . 工程力学, 2020, 37(S): 376-379, 386. doi: 10.6052/j.issn.1000-4750.2019.04.S061
    [2] 许斌, 韩继龙.  预应力装配式风机叶片连接段结构模拟分析 . 工程力学, 2016, 33(2): 209-215. doi: 10.6052/j.issn.1000-4750.2014.06.0548
    [3] 楼文娟, 余江, 潘小涛.  风力机叶片挥舞摆振气弹失稳分析 . 工程力学, 2015, 32(11): 236-242. doi: 10.6052/j.issn.1000-4750.2014.05.0359
    [4] 柯世堂, 王同光, 胡丰, 赵林, 葛耀君.  基于塔架-叶片耦合模型风力机全机风振疲劳分析 . 工程力学, 2015, 32(8): 36-41. doi: 10.6052/j.issn.1000-4750.2014.02.0102
    [5] 李红影, 谢里阳, 郭星辉.  壳板凸肩叶片的非线性振动特性 . 工程力学, 2013, 30(2): 340-347. doi: 10.6052/j.issn.1000-4750.2011.07.0461
    [6] 韩放, 郭杏林, 高海洋.  非线性油膜力作用下叶片-转子-轴承系统弯扭耦合振动特性研究 . 工程力学, 2013, 30(4): 355-359. doi: 10.6052/j.issn.1000-4750.2011.11.0752
    [7] 刘璐璐, 宣海军, 张娜.  航空发动机复合材料机匣叶片包容性研究 . 工程力学, 2013, 30(增刊): 314-319. doi: 10.6052/j.issn.1000-4750.2012.06.S093
    [8] 张 旭, 邢静忠.  叶片局部损伤对大型水平轴风力机静动态特性影响的仿真分析 . 工程力学, 2013, 30(2): 406-412. doi: 10.6052/j.issn.1000-4750.2012.01.0049
    [9] 蔡 新, 朱 杰, 潘 盼.  水平轴风力机叶片最优体型设计 . 工程力学, 2013, 30(2): 477-480. doi: 10.6052/j.issn.1000-4750.2011.09.0579
    [10] 王鹏, 邹正平, 刘斌, 叶建, 周志翔, 李维.  雷诺数对涡轮叶片换热影响的研究 . 工程力学, 2012, 29(9): 349-358. doi: 10.6052/j.issn.1000-4750.2010.12.0922
    [11] 何庆, 宣海军, 刘璐璐, 陈光涛.  叶片相互作用对机匣/叶片包容过程的影响 . 工程力学, 2012, 29(增刊I): 180-184. doi: 10.6052/j.issn.1000-4750.2011.11.S034
    [12] 何 庆, 宣海军, 廖连芳, 洪伟荣, 吴荣仁.  薄靶板受叶片形弹体撞击的数值仿真研究 . 工程力学, 2010, 27(4): 234-239.
    [13] 陈小波, 李 静, 陈健云.  考虑叶片离心刚化效应的风力机塔架风振反应分析 . 工程力学, 2010, 27(1): 240-245.
    [14] 董天文, 梁 力, 王 炜, 王明恕.  抗拔螺旋桩叶片与地基相互作用试验研究 . 工程力学, 2008, 25(8): 0-155,.
    [15] 伍 艳, 谢 华, 王同光.  风力机叶片的非定常气动特性计算方法的改进 . 工程力学, 2008, 25(10): 0-059.
    [16] 张立翔, 王文全, 姚 激.  混流式水轮机转轮叶片流激振动分析 . 工程力学, 2007, 24(8): 0-150.
    [17] 李 健, 郭星辉, 魏伟明.  组合凸肩叶片的固有特性分析 . 工程力学, 2007, 24(8): 0-155.
    [18] 李德源, 叶枝全, 陈严, 包能胜.  风力机叶片载荷谱及疲劳寿命分析 . 工程力学, 2004, 21(6): 118-123.
    [19] 李建中, 王辉, 岑章志, 秦飞, 张洪涛, 于尔亮.  汽轮机带鳍状结构叶片组动力特性的有限元分析 . 工程力学, 1997, 14(4): 68-75.
    [20] 陈余岳.  玻璃钢/复合材料叶片结构优化设计 . 工程力学, 1987, 4(4): 46-53.
  • 加载中
计量
  • 文章访问数:  148
  • HTML全文浏览量:  1
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-14
  • 修回日期:  2018-12-20
  • 刊出日期:  2019-10-25

大型水平轴风力机新型叶片结构设计思想和研究进展

doi: 10.6052/j.issn.1000-4750.2018.06.ST04
    基金项目:  国家自然科学基金项目(51575296)
    作者简介:

    杨阳(1990-),男,广东人,博士生,从事新型风机叶片设计分析研究(E-mail:yangyang13@mails.tsinghua.edu.cn);曾攀(1963-),男,海南人,教授,博士,博导,从事计算力学、结构设计、数值模拟研究(E-mail:zengp@mail.tsinghua.edu.cn).

    通讯作者: 雷丽萍(1968-),女,广西人,副教授,博士,博导,从事材料加工、数值模拟、结构设计研究(E-mail:leilp@mail.tsinghua.edu.cn).
  • 中图分类号: TM315

摘要: 该文首先阐释了在风力机大型化发展过程中叶片结构设计的主要问题在于大型叶片对综合结构性能的高要求与轻量化、气动性能之间的矛盾,传统悬臂梁结构叶片的承载特性限制了叶片进一步大型化发展的空间,新型叶片结构的设计开发是解决这一问题的有效手段。新型叶片结构的设计思想按其着眼点主要包括仿生柔性设计思想、分段设计思想和局部附加结构的设计思想等。在此基础上,该文综述了近年来新型叶片结构的研究进展,为大型叶片结构设计提供了参考。

English Abstract

杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
引用本文: 杨阳, 曾攀, 雷丽萍. 大型水平轴风力机新型叶片结构设计思想和研究进展[J]. 工程力学, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
Citation: YANG Yang, ZENG Pan, LEI Li-ping. CONCEPT AND DEVELOPMENT OF NOVEL BLADE STRUCTURE OF LARGE HORIZONTAL-AXIS WIND TURBINE[J]. Engineering Mechanics, 2019, 36(10): 1-7. doi: 10.6052/j.issn.1000-4750.2018.06.ST04
参考文献 (38)

目录

    /

    返回文章
    返回