留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续排水边界条件下线性加载地基一维固结解析解

冯健雪 陈征 李勇义 梅国雄

冯健雪, 陈征, 李勇义, 梅国雄. 连续排水边界条件下线性加载地基一维固结解析解[J]. 工程力学, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
引用本文: 冯健雪, 陈征, 李勇义, 梅国雄. 连续排水边界条件下线性加载地基一维固结解析解[J]. 工程力学, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
FENG Jian-xue, CHEN Zheng, LI Yong-yi, MEI Guo-xiong. ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING[J]. Engineering Mechanics, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
Citation: FENG Jian-xue, CHEN Zheng, LI Yong-yi, MEI Guo-xiong. ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING[J]. Engineering Mechanics, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294

连续排水边界条件下线性加载地基一维固结解析解

doi: 10.6052/j.issn.1000-4750.2018.05.0294
基金项目: 国家自然科学基金项目(51578164,41672296);广西自然科学基金创新研究团队项目(2016GXNSFGA380008)
详细信息
    作者简介:

    冯健雪(1985-),男,贵州人,博士生,主要从事软土地基固结理论方面的研究(E-mail:fengjianxue@mail.gxu.cn);陈征(1989-),男,江苏人,博士生,主要从事软土地基固结理论方面的研究(E-mail:1946562738@qq.com);李勇义(1990-),男,湖北人,硕士生,主要从事软土地基固结理论方面的研究(E-mail:liyonyi2013@163.com).

    通讯作者: 梅国雄(1975-),男,湖北人,教授,博士,博导,主要从事固结理论和土体基本性质等研究(E-mail:meiguox@163.com).
  • 中图分类号: TU43

ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING

  • 摘要: 基于瞬时加载下的连续排水边界条件,推导出任意荷载连续排水边界条件,建立了任意荷载连续排水边界条件下线性加载一维固结方程。利用有限正弦傅里叶变换,求解出其解析解,通过公式退化和有限元成果对比分析,对该文解答的正确性进行了验证。在不同加载速率和界面参数的条件下,分析了加载速率和界面排水参数对孔压和平均固结度的影响。结果表明:加载速率对固结影响较为显著,加载速率越大,孔压消散越为迅速;当加载速率趋于无穷大时,线性加载退化为瞬时加载;随着界面参数的增大,孔压消散明显,地基固结增快;当界面参数趋于无穷大时,排水边界退化为完全排水边界。工程中,在界面参数或堆载时间确定时,对选择合适的堆载时间或界面参数保证地基稳定性和提高工程效益具有一定参考意义。
  • [1] Terzaghi K. Erdbaumechanik auf bodenphysikalischer grundlage[M]. Wien:Fanz Deuticke, 1925:399.
    [2] Gray H. Simultaneous consolidation of contiguous layers of unlike compressible soils[J]. Transactions of the American Society of Civil Engineering, 1945, 110:1327-1356.
    [3] 梅国雄, 夏君, 梅岭. 基于不对称连续排水边界的太沙基一维固结方程及其解答[J]. 岩土工程学报, 2011, 33(1):28-31. Mei Guoxiong, Xia Jun, Mei Ling. Terzaghi's one-dimensional consolidation equation and its solution based on asymmetric continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):28-31. (in Chinese)
    [4] Mei G X, Chen Q M. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions[J]. Journal of Central South University, 2013, 20(8):2239-2244.
    [5] 郑昱, 梅国雄, 梅岭. 广义连续排水边界在一维固结问题中的应用[J]. 南京工业大学学报(自然科学版), 2010, 32(6):54-58. Zheng Yun, Mei Guoxiong, Mei Ling. Generalized continuous drainage boundary applied in one-dimensional consolidation theory[J]. Journal of Nanjing University of Technology (Natural Science), 2010, 32(6):54-58. (in Chinese)
    [6] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下成层地基一维固结问题的有限元分析[J]. 中南大学学报:自然科学版, 2013, 44(1):315-323. Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation problem with continuous drainage boundaries in layered ground[J]. Journal of Central South University (Natural Science), 2013, 44(1):315-323. (in Chinese)
    [7] 蔡烽, 何利军, 周小鹏, 等. 连续排水边界下一维固结不排水对称面的有限元分析[J]. 岩土工程学报, 2012, 34(11):2141-2147.Cai Feng, He Lijun, Zhou Xiaopeng, et al. Finite element analysis of one-dimensional consolidation of undrained symmetric plane under continuous drainage boundary[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11):2141-2147. (in Chinese)
    [8] 蔡烽, 何利军, 张青青, 等. 考虑土体自重的不排水对称面有限元分析[J]. 浙江大学学报(工学版), 2013, 47(12):2132-2140. Cai Feng, He Lijun, Zhang Qingqing, et al. Finite element analysis of undrained symmetry plane with self-weight[J]. Journal of Zhejiang University (Natural Science), 2013, 47(12):2132-2140. (in Chinese)
    [9] Liu J C, Lei G H. One-dimensional consolidation of layered soils with exponentially time-growing drainage boundaries[J]. Computers and Geotechnics, 2013, 54(10):202-209.
    [10] 何利军, 吴立松, 张涛, 等. 基于连续边界条件的土层厚度随时间变化的平均固结度研究[J]. 工程力学, 2016, 33(6):11-17. He Lijun, Wu Lisong, Zhang Tao, et al. Study on the average consolidation of soil thickness based on continuous boundary conditions[J]. Engineering Mechanics, 2016, 33(6):11-17. (in Chinese)
    [11] Wu W, Zong M, El Naggar M H, et al. Analytical solution for one-dimensional consolidation of double-layered soil with exponentially time-growing drainage boundary[J]. International Journal of Distributed Sensor Networks, 2018, 14(10):1550147718806716.
    [12] Schiffman R. Consolidation of soil under time-dependent loading and varying permeability[J]. Proceedings, Highway Research Board, 1958, 37:584-617.
    [13] Lei G H, Zheng Q, Ng C W W, et al. An analytical solution for consolidation with vertical drains under multi-ramp loading[J]. Géotechnique, 2015, 65(7):531-547.
    [14] Xie K H, Xia C Q, An R, et al. A study on the one-dimensional consolidation of double-layered structured soils[J]. Computers and Geotechnics, 2016, 73:189-198.
    [15] Wilson N E, Elgohary M M. Consolidation of soils under cyclic loading[J]. Canadian Geotechnical Journal, 1974, 11(3):420-423.
    [16] Alonso E E, Krizek R J. Randomness of settlement rate under stochastic load[J]. Journal of the Geotechnical Engineering Division, ASCE, 1974, 100(EM6):1211-1226.
    [17] Xie K H, Li B H, Li Q L. A nonlinear theory of consolidation under time-dependent loading[C]. Proceedings of 2nd International Conference on Soft Soil Engineering, Nanjing:Hohai University Press, 1996:193-196.
    [18] Hu A F, Xia C Q, Cui J, et al. Nonlinear consolidation analysis of natural structured clays under time-dependent loading[J]. International Journal of Geomechanics, 2017, 18(2):04017140.
    [19] Favaretti M, Soranzo M. A simplified consolidation theory in cyclic loading conditions[C]. International Symposium on Compression and Consolidation of Clayey Soils, A. A. Balkema:Rotterdam, The Netherlands, 1995:405-409.
    [20] 王小雯, 张建民. 随机波浪作用下饱和砂质海床弹塑性动力响应规律[J]. 工程力学, 2018, 35(6):240-248, 256. Wang Xiaowen, Zhang Jianmin. Elastoplastic dynamic behaviors of saturated sandy seabed under random[J]. Engineering Mechanics, 2018, 35(6):240-248, 256. (in Chinese)
    [21] Chen J Z, Zhu X R, Xie K H, et al. One dimensional consolidation of soft clay under trapezoidal cyclic loading[C]. Proceedings of 2nd International Conference on Soft Soil Engineering, Nanjing:Hohai University Press, 1996:211-216.
    [22] Pzul M, Sahu R. One dimensional consolidation under cyclic loading[J]. International Journal of Geotechnical Engineering, 2013, 6(3):395-401.
    [23] Ho L, Fatahi B. Analytical solution for the two-dimensional plane strain consolidation of an unsaturated soil stratum subjected to time-dependent loading[J]. Computers and Geotechnics, 2015, 67:1-16.
    [24] Feng J X, Ni P P, Mei G X. One-dimensional self-weight consolidation with continuous drainage boundary conditions:Solution and application to clay-drain reclamation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(8):1634-1652.
    [25] 黄文熙. 土的工程性质[M]. 北京:水利水电出版社, 1983:138-139. Huang Wenxi. Engineering properties of soil[M]. Beijing:Hydraulic and Hydroelectricity Press, 1983:138-139. (in Chinese)
    [26] 徐书平, 刘祖德, 鲍华, 等. 堆载预压过程中的地基稳定性计算方法[J]. 岩土力学, 2005, 26(6):955-958. Xu Shuping, Liu Zude, Bao Hua, et al. Calculation methods of foundation stability in process of preloading[J]. Rock & Soil Mechanics, 2005, 26(6):955-958. (in Chinese)
  • [1] 李勇义, 冯健雪, 梅国雄.  连续排水边界下梯形循环荷载作用的一维固结解析解 . 工程力学, 2019, 36(2): 134-140. doi: 10.6052/j.issn.1000-4750.2017.12.0928
    [2] 宗梦繁, 吴文兵, 梅国雄, 梁荣柱, 田乙.  连续排水边界条件下土体一维流变固结解析解 . 工程力学, 2019, 36(9): 79-88. doi: 10.6052/j.issn.1000-4750.2018.06.0349
    [3] 冯健雪, 陈征, 李勇义, 梅国雄.  连续排水边界条件下考虑自重的地基一维固结分析 . 工程力学, 2019, 36(5): 184-191. doi: 10.6052/j.issn.1000-4750.2018.04.0227
    [4] 何利军, 吴立松, 张涛, 梅国雄.  基于连续边界条件的土层厚度随时间变化的平均固结度研究 . 工程力学, 2016, 33(增刊): 11-17. doi: 10.6052/j.issn.1000-4750.2015.05.S012
    [5] 金浏, 杜修力.  加载速率对混凝土拉伸破坏行为影响观数值分析 . 工程力学, 2015, 32(8): 42-49. doi: 10.6052/j.issn.1000-4750.2013.08.0791
    [6] 周煜, 谢康和, 刘兴旺.  考虑起始比降和涂抹作用的竖井地基固结解 . 工程力学, 2014, 31(2): 103-109. doi: 10.6052/j.issn.1000-4750.2012.09.0686
    [7] 倪静, Buddhima Indraratna, 耿雪玉, 陈有亮, 朱颖.  循环荷载水平与加载频率耦合作用下的软粘土特性研究 . 工程力学, 2014, 31(10): 167-173. doi: 10.6052/j.issn.1000-4750.2013.05.0387
    [8] 舒小平.  正交压电复合材料层板各类边界的解析解 . 工程力学, 2013, 30(10): 288-295. doi: 10.6052/j.issn.1000-4750.2012.07.0475
    [9] 钱善华, 刘利国, 倪自丰, 葛世荣, 靳忠民.  加载速率对关节软骨变形特性影响的研究 . 工程力学, 2013, 30(12): 298-300. doi: 10.6052/j.issn.1000-4750.2013.03.0235
    [10] 谢新宇, 王龙, 刘开富.  层状地基一维固结电阻网法解答 . 工程力学, 2012, 29(6): 98-104. doi: 10.6052/j.issn.1000-4750.2010.08.0608
    [11] 肖和业, 盛美萍, 赵芝梅.  弹性边界条件下带有任意分布弹簧质量系统的梁自由振动的解析解 . 工程力学, 2012, 29(9): 318-323. doi: 10.6052/j.issn.1000-4750.2010.12.0911
    [12] 吕松涛.  考虑加载速度影响的沥青混合料疲劳方程 . 工程力学, 2012, 29(8): 276-281. doi: 10.6052/j.issn.1000-4750.2011.05.0273
    [13] 邓 琴, 李春光, 王水林, 郑 宏, 葛修润.  边界元中近奇异积分的一种解析方法 . 工程力学, 2010, 27(9): 49-054.
    [14] 秦绪喜, 刘寒冰.  均布与线性荷载下简支T梁剪力滞系数的圣维南解 . 工程力学, 2009, 26(10): 135-139.
    [15] 赵海峰.  微米厚度金属薄膜/陶瓷基体界面力学性能的实验测量与数值模拟 . 工程力学, 2009, 26(4): 68-072,.
    [16] 吕培印, 宋玉普, 侯景鹏.  一向侧压混凝土在不同加载速率下的受压试验及其破坏准则 . 工程力学, 2002, 19(5): 67-71.
    [17] 沈新普, Zenon Mroz.  循环载荷下层间界面反平面剪切破坏的解析解:1.卸载行为 . 工程力学, 2001, 18(3): 97-104.
    [18] 沈新普, Zenon Mroz.  循环载荷下层间界面反平面剪切破坏的解析解:2.再加载及综合响应分析 . 工程力学, 2001, 18(5): 43-49.
    [19] 范家参.  非线性阻尼作用时Ⅲ型断裂动力学的解析解 . 工程力学, 1997, 14(2): 52-58.
    [20] 郑建军.  双参数地基上圆(环)板非对称稳态振动的解析解 . 工程力学, 1993, 10(2): 48-54.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  3
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-11-08
  • 刊出日期:  2019-06-25

连续排水边界条件下线性加载地基一维固结解析解

doi: 10.6052/j.issn.1000-4750.2018.05.0294
    基金项目:  国家自然科学基金项目(51578164,41672296);广西自然科学基金创新研究团队项目(2016GXNSFGA380008)
    作者简介:

    冯健雪(1985-),男,贵州人,博士生,主要从事软土地基固结理论方面的研究(E-mail:fengjianxue@mail.gxu.cn);陈征(1989-),男,江苏人,博士生,主要从事软土地基固结理论方面的研究(E-mail:1946562738@qq.com);李勇义(1990-),男,湖北人,硕士生,主要从事软土地基固结理论方面的研究(E-mail:liyonyi2013@163.com).

    通讯作者: 梅国雄(1975-),男,湖北人,教授,博士,博导,主要从事固结理论和土体基本性质等研究(E-mail:meiguox@163.com).
  • 中图分类号: TU43

摘要: 基于瞬时加载下的连续排水边界条件,推导出任意荷载连续排水边界条件,建立了任意荷载连续排水边界条件下线性加载一维固结方程。利用有限正弦傅里叶变换,求解出其解析解,通过公式退化和有限元成果对比分析,对该文解答的正确性进行了验证。在不同加载速率和界面参数的条件下,分析了加载速率和界面排水参数对孔压和平均固结度的影响。结果表明:加载速率对固结影响较为显著,加载速率越大,孔压消散越为迅速;当加载速率趋于无穷大时,线性加载退化为瞬时加载;随着界面参数的增大,孔压消散明显,地基固结增快;当界面参数趋于无穷大时,排水边界退化为完全排水边界。工程中,在界面参数或堆载时间确定时,对选择合适的堆载时间或界面参数保证地基稳定性和提高工程效益具有一定参考意义。

English Abstract

冯健雪, 陈征, 李勇义, 梅国雄. 连续排水边界条件下线性加载地基一维固结解析解[J]. 工程力学, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
引用本文: 冯健雪, 陈征, 李勇义, 梅国雄. 连续排水边界条件下线性加载地基一维固结解析解[J]. 工程力学, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
FENG Jian-xue, CHEN Zheng, LI Yong-yi, MEI Guo-xiong. ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING[J]. Engineering Mechanics, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
Citation: FENG Jian-xue, CHEN Zheng, LI Yong-yi, MEI Guo-xiong. ANALYTICAL SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION OF SOFT CLAYEY SOIL WITH A CONTINUOUS DRAINAGE BOUNDARY UNDER LINEAR LOADING[J]. Engineering Mechanics, 2019, 36(6): 219-226. doi: 10.6052/j.issn.1000-4750.2018.05.0294
参考文献 (26)

目录

    /

    返回文章
    返回