留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维头部数值模型的颅脑碰撞损伤机理研究

栗志杰 由小川 柳占立 庄茁 杨策

栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
引用本文: 栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
LI Zhi-jie, YOU Xiao-chuan, LIU Zhan-li, ZHUANG Zhuo, YANG Ce. STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL[J]. Engineering Mechanics, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
Citation: LI Zhi-jie, YOU Xiao-chuan, LIU Zhan-li, ZHUANG Zhuo, YANG Ce. STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL[J]. Engineering Mechanics, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254

基于三维头部数值模型的颅脑碰撞损伤机理研究

doi: 10.6052/j.issn.1000-4750.2018.04.0254
基金项目: 国家重点基础研究发展计划项目
详细信息
    作者简介:

    栗志杰(1987-),男,河北人,博士生,从事生物力学与固体力学研究(E-mail:lizj15@mails.tsinghua.edu.cn);柳占立(1981-),男,河南人,副教授,博士,博导,从事非线性研究(E-mail:liuzhanli@mail.tsinghua.edu.cn);庄茁(1952-),男,辽宁人,教授,博士,博导,国家973计划首席科学家,从事非线性研究(E-mail:zhuangz@tsinghua.edu.cn);杨策(1973-),男,山西人,副教授,博士,博导,从事创伤医学研究(E-mail:sepsismd@126.com).

    通讯作者: 由小川(1977-),男,河北人,副教授,博士,博导,从事非线性研究(E-mail:youxiaochuan@tsinghua.edu.cn).
  • 中图分类号: R318.01

STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL

  • 摘要: 头部碰撞载荷会致使颅脑发生创伤性脑损伤(Traumatic Brain Injury,TBI)。其中,脑组织挫裂伤是最为常见的一种,具有高死亡率与高致残率的特性。该文基于数值模拟方法对其开展相关研究,揭示其损伤机理,对该类损伤的预防救治与相关防护设备的开发都具有重要意义。首先,该文基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造。在该模型中,颅骨采用典型类三明治结构进行表征,其内外层为刚度与密度较大的骨密质,中间层为骨松质。为了真实反映脑组织与颅骨间的相互作用,将脑脊液与蛛网膜小梁简化为均质整体,采用状态方程表征脑脊液的液态特性,并通过较小的剪切模量表征蛛网膜小梁的剪切传递作用。然后,基于死尸前额碰撞实验对三维头部数值模型的有效性进行验证。该头部模型采用三种不同的颈部约束边界条件对前额碰撞实验进行数值模拟,模拟结果表明:自由边界条件下的模拟结果与实验数据吻合良好,验证了该头部碰撞模型的有效性;而在竖向约束边界条件或固定边界条件下颈部的约束过于刚硬,导致撞击处与对撞处的颅内正、负压力交替变换,与实验结果相比出现较大偏差。最后,利用验证的头部碰撞模型对枕部碰撞过程进行数值模拟,并结合前额碰撞的模拟结果,分别从脑组织压力(体积变形)与Mises应力(剪切变形)等方面对颅脑的动态响应规律进行分析;进一步结合医学上颅脑碰撞损伤的统计数据,揭示了脑组织挫裂伤的损伤机理,建立了相应的损伤准则。
  • [1] World Health Organization. Global status report on road safety 2015[M]. World Health Organization, 2015.
    [2] Dixit P, Liu G R. A review on recent development of finite element models for head injury simulations[J]. Archives of Computational Methods in Engineering, 2017, 24(4):979-1031.
    [3] Nahum A M, Smith R, Ard C C. Intracranial pressure dynamics during head impact[R]. Proceedings of 21st Stapp Car Crash Conference. Pennsylvania:Society of Automotive Engineers, 1977:339-366.
    [4] Trosseille X, Tarriere C, Lavaste F, et al. Development of a FEM of the human head according to a specific test protocol[R]. Proceedings the 36th Car Crash Conference. Seattle:Society of Automotive Engineers, 1992:235-253.
    [5] Yoganandan N, Pintar F A, Sances A, et al. Biomechanics of skull fracture[J]. Journal of neurotrauma, 1995, 12(4):659-668.
    [6] Hardy W N, Foster C D, Mason M J, et al. Investigation of head injury mechanisms using neutral density technology and high-speed biplanar X-ray[J]. Stapp Car Crash Journal, 2001, 45:337-368.
    [7] Kilbourne M, Kuehn R, Tosun C, et al. Novel model of frontal impact closed head injury in the rat[J]. Journal of Neurotrauma, 2009, 26(12):2233-2243.
    [8] Feng Y, Gao Y, Wang T, et al. A longitudinal study of the mechanical properties of injured brain tissue in a mouse model[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71:407-415.
    [9] Elkin B S, Morrison B. Region-specific tolerance criteria for the living brain[J]. Stapp Car Crash J, 2007, 51(10):127-138.
    [10] Dollé J P, Morrison B, Schloss R S, et al. Brain-on-a-chip microsystem for investigating traumatic brain injury:Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries[J]. Technology, 2014, 2(2):106-117.
    [11] Miyazaki Y, Tachiya H, Anata K, et al. Measurement of pressure responses in a physical model of a human head with high shape fidelity based on CT/MRI data[J]. International Journal of Modern Physics B, 2008, 22(9):1718-1723.
    [12] Salzar R S, Treichler D, Wardlaw A, et al. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads[J]. Journal of Neurotrauma, 2017, 34(8):1589-1602.
    [13] 张建国, 王芳, 薛强. 后碰撞中人体颈部动力学响应的有限元分析[J]. 工程力学, 2010, 27(4):208-211. Zhang Jianguo, Wang Fang, Xue Qiang. Fe anlysis of human neck dynamic responses under rear-end impact[J]. Engineering Mechanics, 2010, 27(4):208-211. (in Chinese)
    [14] Kleiven S. Predictors for traumatic brain injuries evaluated through accident reconstructions[R]. Stapp Car Crash Journal, 2007, 51:81-114.
    [15] Ganpule S, Alai A, Plougonven E, et al. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(3):511-531.
    [16] Chafi M S, Ganpule S, Gu L, et al. Dynamic response of brain subjected to blast loadings:influence of frequency ranges[J]. International Journal of Applied Mechanics, 2011, 3(4):803-823.
    [17] Wang C, Pahk J B, Balaban C D, et al. Biomechanical Assessment of The Bridging Vein Rupture of Blast-Induced Traumatic Brain Injury Using The Finite Element Human Head Model[C]. ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012:795-805.
    [18] Moore D F, Jérusalem A, Nyein M, et al. Computational biology-modeling of primary blast effects on the central nervous system[J]. Neuroimage, 2009, 47:T10-T20.
    [19] Versace J. A review of severity index[C]. Proc of 15th Stapp Car Crash Conference. San Diego:Society of Automotive Engineers, 1971:771-796.
    [20] Newman J A. A generalized acceleration model for brain injury threshold (GAMBIT)[C]//Proceedings of International IRCOBI Conference, 1986.
    [21] Newman J A, Shewchenko N. A proposed new biomechanical head injury assessment function-the maximum power index[R]. SAE Technical Paper, 2000.
    [22] Ward C, Chan M, Nahum A. Intracranial pressure-a brain injury criterion[R]. SAE Technical Paper, 1980.
    [23] Takhounts E G, Eppinger R H, Campbell J Q, et al. On the development of the SIMon finite element head model[C]//Sae Conference ProceedingS P. Sae; 1999, 2003:107-134.
    [24] Stalnaker R L, Alem N M, Benson J B. Validation studies for head impact injury model[M]. US Department of Transportation, National Highway Traffic Safety Administration, 1978.
    [25] Nusholtz G S, Lux P, Kaiker P, et al. Head impact response-Skull deformation and angular accelerations[J]. SAE transactions, 1984:800-833.
    [26] Nusholtz G S, Wylie B, Glascoe L G. Cavitation/boundary effects in a simple head impact model[J]. Aviation Space & Environmental Medicine,1995, 66(7):661-667.
    [27] Chu C S, Lin M S, Huang H M, et al. Finite element analysis of cerebral contusion[J]. Journal of Biomechanics, 1994, 27(2):187-194.
    [28] Huang H M, Lee M C, Lee S Y, et al. Finite element analysis of brain contusion:an indirect impact study[J]. Medical and Biological Engineering and Computing, 2000, 38(3):253-259.
    [29] Mao H, Yang K H. Investigation of brain contusion mechanism and threshold by combining finite element analysis with in vivo histology data[J]. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(3):357-366.
    [30] David L. Felten, Ralph F. Józefowicz著. 奈特人体神经解剖彩色图谱[M]. 崔益群译. 北京:人民卫生出版社, 2006:42. David L. Felten, Ralph F. Józefowicz. Netter's atlas of human neuroscience[M]. Translated by Cui Yiqun. Beijing:People's Medical Publishing House, 2006:42. (in Chinese)
    [31] Chafi M S, Karami G, Ziejewski M. Biomechanical assessment of brain dynamic responses due to blast pressure waves[J]. Annals of biomedical engineering, 2010, 38(2):490-504.
    [32] Benedict J V, Harris E H, Von Rosenberg D U. An analytical investigation of the cavitation hypothesis of brain damage[J]. Journal of Basic Engineering, 1970, 92(3):597-603.
    [33] Zhang L, Yang K H, Dwarampudi R, et al. Recent advances in brain injury research:a new human head model development and validation[J]. Stapp Car Crash J, 2001, 45(11):369-394.
    [34] Willinger R, Baumgartner D, Chinn B, et al. Head tolerance limits derived from numerical replication of real world accidents[C]. Proceedings of the International Research Council on the Biomechanics of Injury conference. International Research Council on Biomechanics of Injury, 2000, 28:209-221.
    [35] 吴在德. 外科学[M]. 第7版. 北京:人民卫生出版社, 2012:245. Wu Zaide. Surgery[M]. 7th ed. Beijing:People's Medical Publishing House, 2012:245. (in Chinese)
  • [1] 张爱林, 文闻, 张艳霞, 武超群, 王庆博.  空间三撑杆双环索索穹顶考虑自重的预应力计算方法及参数分析 . 工程力学, 2020, 37(5): 36-45. doi: 10.6052/j.issn.1000-4750.2019.07.0403
    [2] 郭立平, 余志祥, 骆丽茹, 齐欣, 赵世春.  基于力流等效的环形网顶破力学行为解析方法 . 工程力学, 2020, 37(5): 129-139. doi: 10.6052/j.issn.1000-4750.2019.07.0345
    [3] 白久林, 陈辉明, 孙博豪, 金双双.  RC框架结构地震均匀损伤优化设计 . 工程力学, 2020, 37(): 1-10. doi: 10.6052/j.issn.1000-4750.2019.10.0572
    [4] 陈朝晖, 杨帅, 杨永斌.  弹性膜结构几何非线性分析的刚体准则法 . 工程力学, 2020, 37(6): 246-256. doi: 10.6052/j.issn.1000-4750.2019.08.0488
    [5] 汪炳, 黄侨, 刘小玲.  考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证 . 工程力学, 2020, 37(6): 140-147. doi: 10.6052/j.issn.1000-4750.2019.08.0434
    [6] 卜一之, 刘欣益, 张清华.  基于截面应力法的钢-UHPC组合板初裂荷载计算方法研究 . 工程力学, 2020, 37(): 1-7. doi: 10.6052/j.issn.1000-4750.2019.12.0738
    [7] 徐华, 邓鹏, 蓝淞耀, 刘祖容, 杨绿峰.  曲线裂纹裂尖SIFs等效分析的广义参数Williams单元确定方法 . 工程力学, 2020, 37(6): 34-41. doi: 10.6052/j.issn.1000-4750.2019.08.0455
    [8] 门进杰, 张谦, 徐超, 史庆轩.  基于改进Park-Ang双参数模型的RCS混合框架结构地震损伤评估 . 工程力学, 2020, 37(): 1-11. doi: 10.6052/j.issn.1000-4750.2019.10.0604
    [9] 李祖吉, 黄云艳, 刘怀灿, 耿建军, 朱耀辉, 张文超.  空调塑料材料的碰撞失效模拟研究 . 工程力学, 2020, 37(7): 1-7. doi: 10.6052/j.issn.1000-4750.2019.08.0482
    [10] 杨贞军, 黄宇劼, 尧锋, 刘国华.  基于粘结单元的三维随机细观混凝土离散断裂模拟 . 工程力学, 2020, 37(): 1-10. doi: 10.6052/j.issn.1000-4750.2019.09.0559
    [11] 叶康生, 梁童.  平面曲梁面外自由振动有限元分析的p型超收敛算法 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.11.0694
    [12] 刘永财, 陈文亮, 胡庆婉, 鲍益东.  有限元法中间构形初始解预示的Laplace-Beltrami方程法 . 工程力学, 2020, 37(6): 42-50. doi: 10.6052/j.issn.1000-4750.2019.07.0425
    [13] 杨友喆, 李易, 周大兴, 陆新征, 孙海林.  板柱节点冲剪破坏后的精细有限元分析 . 工程力学, 2020, 37(6): 206-215. doi: 10.6052/j.issn.1000-4750.2019.09.0494
    [14] 李佳龙, 李钢, 余丁浩.  多边形比例边界有限元非线性高效分析方法 . 工程力学, 2020, 37(): 1-8. doi: 10.6052/j.issn.1000-4750.2019.11.0634
    [15] 文颖, 陈泽林.  基于协调翘曲场的开闭口混合薄壁截面杆件约束扭转一维有限元分析 . 工程力学, 2020, 37(): 1-12. doi: 10.6052/j.issn.1000-4750.2019.11.0639
    [16] 周墨臻, 张丙印, 张顶立, 方黄城.  基于三场变分原理的对偶mortar有限元法 . 工程力学, 2020, 37(6): 51-59. doi: 10.6052/j.issn.1000-4750.2019.09.0540
    [17] 徐文雪, 吕振华.  行程敏感式液阻减振器动力学特性的三维流-固耦合有限元仿真分析 . 工程力学, 2020, 37(): 1-13. doi: 10.6052/j.issn.1000-4750.2019.10.0584
    [18] 潘洪武, 王伟, 张丙印.  基于计算接触力学的粗颗粒土体材料细观性质模拟 . 工程力学, 2020, 37(): 1-9. doi: 10.6052/j.issn.1000-4750.2019.08.0490
    [19] 王宏博, 董世民.  轴向往复运动抽油杆柱在弯曲井眼内横向振动的仿真模型 . 工程力学, 2020, 37(): 1-7. doi: 10.6052/j.issn.1000-4750.2019.12.0731
    [20] 闫维明, 王宝顺, 何浩祥.  并联式单向单颗粒阻尼器力学模型及优化分析 . 工程力学, 2020, 37(): 1-13. doi: 10.6052/j.issn.1000-4750.2019.08.0487
  • 加载中
计量
  • 文章访问数:  97
  • HTML全文浏览量:  1
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 修回日期:  2018-12-07
  • 刊出日期:  2019-05-25

基于三维头部数值模型的颅脑碰撞损伤机理研究

doi: 10.6052/j.issn.1000-4750.2018.04.0254
    基金项目:  国家重点基础研究发展计划项目
    作者简介:

    栗志杰(1987-),男,河北人,博士生,从事生物力学与固体力学研究(E-mail:lizj15@mails.tsinghua.edu.cn);柳占立(1981-),男,河南人,副教授,博士,博导,从事非线性研究(E-mail:liuzhanli@mail.tsinghua.edu.cn);庄茁(1952-),男,辽宁人,教授,博士,博导,国家973计划首席科学家,从事非线性研究(E-mail:zhuangz@tsinghua.edu.cn);杨策(1973-),男,山西人,副教授,博士,博导,从事创伤医学研究(E-mail:sepsismd@126.com).

    通讯作者: 由小川(1977-),男,河北人,副教授,博士,博导,从事非线性研究(E-mail:youxiaochuan@tsinghua.edu.cn).
  • 中图分类号: R318.01

摘要: 头部碰撞载荷会致使颅脑发生创伤性脑损伤(Traumatic Brain Injury,TBI)。其中,脑组织挫裂伤是最为常见的一种,具有高死亡率与高致残率的特性。该文基于数值模拟方法对其开展相关研究,揭示其损伤机理,对该类损伤的预防救治与相关防护设备的开发都具有重要意义。首先,该文基于颅脑的核磁共振切片建立了人体头部三维数值模型,该模型真实地反映了颅脑的生理特征与细节构造。在该模型中,颅骨采用典型类三明治结构进行表征,其内外层为刚度与密度较大的骨密质,中间层为骨松质。为了真实反映脑组织与颅骨间的相互作用,将脑脊液与蛛网膜小梁简化为均质整体,采用状态方程表征脑脊液的液态特性,并通过较小的剪切模量表征蛛网膜小梁的剪切传递作用。然后,基于死尸前额碰撞实验对三维头部数值模型的有效性进行验证。该头部模型采用三种不同的颈部约束边界条件对前额碰撞实验进行数值模拟,模拟结果表明:自由边界条件下的模拟结果与实验数据吻合良好,验证了该头部碰撞模型的有效性;而在竖向约束边界条件或固定边界条件下颈部的约束过于刚硬,导致撞击处与对撞处的颅内正、负压力交替变换,与实验结果相比出现较大偏差。最后,利用验证的头部碰撞模型对枕部碰撞过程进行数值模拟,并结合前额碰撞的模拟结果,分别从脑组织压力(体积变形)与Mises应力(剪切变形)等方面对颅脑的动态响应规律进行分析;进一步结合医学上颅脑碰撞损伤的统计数据,揭示了脑组织挫裂伤的损伤机理,建立了相应的损伤准则。

English Abstract

栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
引用本文: 栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
LI Zhi-jie, YOU Xiao-chuan, LIU Zhan-li, ZHUANG Zhuo, YANG Ce. STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL[J]. Engineering Mechanics, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
Citation: LI Zhi-jie, YOU Xiao-chuan, LIU Zhan-li, ZHUANG Zhuo, YANG Ce. STUDY ON THE MECHANISM OF BRAIN INJURY DURING HEAD IMPACT BASED ON THE THREE-DIMENSIONAL NUMERICAL HEAD MODEL[J]. Engineering Mechanics, 2019, 36(5): 246-256. doi: 10.6052/j.issn.1000-4750.2018.04.0254
参考文献 (35)

目录

    /

    返回文章
    返回