留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扑翼空气动力学研究进展与应用

向锦武 孙毅 申童 李道春

向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
引用本文: 向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
XIANG Jin-wu, SUN Yi, SHEN Tong, LI Dao-chun. RESEARCH PROGRESS AND APPLICATION OF FLAPPING WING AERODYNAMICS[J]. Engineering Mechanics, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
Citation: XIANG Jin-wu, SUN Yi, SHEN Tong, LI Dao-chun. RESEARCH PROGRESS AND APPLICATION OF FLAPPING WING AERODYNAMICS[J]. Engineering Mechanics, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175

扑翼空气动力学研究进展与应用

doi: 10.6052/j.issn.1000-4750.2018.03.0175
基金项目: 国家自然科学基金面上项目(11572023)
详细信息
    作者简介:

    向锦武(1964-),男,湖南人,教授,博士,博导,从事无人飞行器总体设计研究(E-mail:xiangjw@buaa.edu.cn);孙毅(1978-),男,陕西人,工程师,博士生,从事无人机总体技术与微型飞行器设计研究(E-mail:821522495@qq.com);申童(1993-),男,陕西人,博士生,从事微型扑翼气动特性研究(E-mail:shentong@buaa.edu.cn).

    通讯作者: 李道春(1980-),男,山东人,教授,博士,博导,从事飞行器气动弹性与微型飞行器设计研究(E-mail:lidc@buaa.edu.cn).
  • 中图分类号: V211.5

RESEARCH PROGRESS AND APPLICATION OF FLAPPING WING AERODYNAMICS

  • 摘要: 昆虫、鸟类与蝙蝠等生物具有高超的飞行能力,是扑翼飞行器的主要模仿对象。近年来,扑翼空气动力学领域的研究取得了很大进展,该文主要对其主要研究成果进行综述,重点介绍扑翼空气动力学各研究方向的最新进展,包括昆虫、鸟类与蝙蝠扑翼的主要升力机制,翅膀形态学参数与微观结构、翅膀柔性与动态变形、翼-翼干扰、翼-身干扰、个体间干扰及地面效应等对扑翼气动特性的影响。同时还对仿生扑翼飞行器气动研究的新进展进行了介绍,并提出了扑翼空气动力学所面临的主要问题和挑战。
  • [1] Usherwood J R, Lehmann F O. Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl[J]. Journal of the Royal Society Interface, 2008, 5(28):1303-1307.
    [2] Lovejoy N R, Mullen S P, Sword G A, et al. Ancient trans-Atlantic flight explains locust biogeography:molecular phylogenetics of Schistocerca[J]. Proceedings of the Royal Society B-Biological Sciences, 2006, 273(1588):767-774.
    [3] Rattenborg N C, Voirin B, Cruz S M, et al. Evidence that birds sleep in mid-flight[J]. Nature Communications, 2016, 7:12468. doi: 10.1038/ncomms12468.
    [4] Shyy W, Aono H, Kang C-K, et al. An introduction to flapping wing aerodynamics[M]. Cambridge:Cambridge University Press, 2013.
    [5] Ellington C P. The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms[J]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1984, 305(1122):79-113.
    [6] Dickinson M H, Gotz K G. Unsteady aerodynamic performance of model wings at low reynolds numbers[J]. The Journal of Experimental Biology, 1993, 174(1):45-64.
    [7] Ellington C P, Van Den Berg C, Willmott A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610):626-630.
    [8] Liu H, Ellington C P, Kawachi K, et al. A computational fluid dynamic study of hawkmoth hovering[J]. The Journal of Experimental Biology, 1998, 201(4):461-477.
    [9] Dickinson M H, Lehmann F-O, Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422):1954-1960.
    [10] Wang Z J. Two dimensional mechanism for insect hovering[J]. Physical Review Letters, 2000, 85(10):2216-2219.
    [11] Birch J M, Dickinson M H. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412(6848):729-733.
    [12] Sane S P, Dickinson M H. The control of flight force by a flapping wing:Lift and drag production[J]. Journal of Experimental Biology, 2001, 204(15):2607-2626.
    [13] Sun M, Tang H. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1):55-70.
    [14] Lentink D, Dickinson M H. Rotational accelerations stabilize leading edge vortices on revolving fly wings[J]. Journal of Experimental Biology, 2009, 212(16):2705-2719.
    [15] Vanella M, Fitzgerald T, Preidikman S, et al. Influence of flexibility on the aerodynamic performance of a hovering wing[J]. Journal of Experimental Biology, 2009, 212(1):95-105.
    [16] Perez-Rosado A, Gehlhar R D, Nolen S, et al. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles[J]. Smart Materials and Structures, 2015, 24(6):065042. doi: 10.1088/0964-1726/24/6/065042.
    [17] Nakata T, Liu H, Tanaka Y, et al. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle[J]. Bioinspiration & Biomimetics, 2011, 6(4):045002. doi: 10.1088/1748-3182/6/4/045002.
    [18] Han J S, Chang J W, Kim S T. Reynolds number dependency of an insect-based flapping wing[J]. Bioinspiration & Biomimetics, 2014, 9(4):046012. doi: 10.1088/1748-3182/9/4/046012.
    [19] Truong T V, Le T Q, Park H C, et al. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight[J]. Bioinspiration & Biomimetics, 2017, 12(3):036012. doi: 10.1088/1748-3190/aa6c79.
    [20] Fu J J, Liu X H, Shyy W, et al. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings[J]. Bioinspiration & Biomimetics, 2018, 13(3):036001. doi: 10.1088/1748-3190/aaaac1.
    [21] Wang Z J, Birch J M, Dickinson M H. Unsteady forces and flows in low Reynolds number hovering flight:two-dimensional computations vs robotic wing experiments[J]. Journal of Experimental Biology, 2004, 207(3):449-460.
    [22] Sunada S, Takashima H, Hattori T, et al. Fluid-dynamic characteristics of a bristled wing[J]. Journal of Experimental Biology, 2002, 205(17):2737-2744.
    [23] Lu H, Lua K B, Lim T T, et al. Ground effect on the aerodynamics of a two-dimensional oscillating airfoil[J]. Experiments in Fluids, 2014, 55(7). doi: 10.1007/s00348-014-1787-4.
    [24] Zhao L, Huang Q F, Deng X Y, et al. Aerodynamic effects of flexibility in flapping wings[J]. Journal of the Royal Society Interface, 2010, 7(44):485-497.
    [25] Hightower B J, Ingersoll R, Chin D D, et al. Design and analysis of aerodynamic force platforms for free flight studies[J]. Bioinspiration & Biomimetics, 2017, 12(6):064001. doi: 10.1088/1748-3190/aa7eb2.
    [26] Johansson L C, Hakansson J, Jakobsen L, et al. Ear-body lift and a novel thrust generating mechanism revealed by the complex wake of brown long-eared bats (Plecotus auritus)[J]. Scientific Reports, 2016, 6:24886. doi: 10.1038/srep24886.
    [27] Bomphrey R J, Nakata T, Phillips N, et al. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight[J]. Nature, 2017, 544(7648):92-95.
    [28] Young J, Walker S M, Bomphrey R J, et al. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency[J]. Science, 2009, 325(5947):1549-1552.
    [29] Zheng Y Y, Wu Y H, Tang H. An experimental study on the forewing-hindwing interactions in hovering and forward flights[J]. International Journal of Heat and Fluid Flow, 2016, 59:62-73.
    [30] Phillips N, Knowles K, Bomphrey R J. Petiolate wings:effects on the leading-edge vortex in flapping flight[J]. Interface Focus, 2017, 7(1):20160084. doi:10.1098/rsfs. 2016.0084.
    [31] Phillips N, Knowles K, Bomphrey R J. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing[J]. Bioinspiration & Biomimetics, 2015, 10(5):056020. doi: 10.1088/1748-3190/10/5/056020.
    [32] Trizila P, Kang C K, Aono H, et al. Low-reynoldsnumber aerodynamics of a flapping rigid flat plate[J]. Aiaa Journal, 2011, 49(4):806-823.
    [33] Cheng X, Sun M. Very small insects use novel wing flapping and drag principle to generate the weight-supporting vertical force[J]. Journal of Fluid Mechanics, 2018, 855:646-670.
    [34] Wang Z J, Russell D. Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight[J]. Physical Review Letters, 2007, 99(14):148101. doi:10.1103/PhysRevLett.99. 148101.
    [35] Kolomenskiy D, Maeda M, Engels T, et al. Aerodynamic ground effect in fruitfly sized insect takeoff[J]. Plos One, 2016, 11(3):0152072. doi:10.1371/journal.pone. 0152072.
    [36] Liu H. Integrated modeling of insect flight:From morphology, kinematics to aerodynamics[J]. Journal of Computational Physics, 2009, 228(2):439-459.
    [37] Wang S Z, Zhang X, He G W, et al. Lift enhancement by bats' dynamically changing wingspan[J]. Journal of the Royal Society Interface, 2015, 12(113):20150821. doi: 10.1098/rsif.2015.0821.
    [38] Liu G, Dong H B, Li C Y. Vortex dynamics and new lift enhancement mechanism of wing-body interaction in insect forward flight[J]. Journal of Fluid Mechanics, 2016, 79(2016)5:634-651.
    [39] Nabawy M R A, Crowthe W J. A quasi-steady lifting line theory for insect-like hovering flight[J]. Plos One, 2015, 10(8):0158929. doi: 10.1371/journal.pone.0158929.
    [40] Nabawy M R A, Crowther W J. On the quasi-steady aerodynamics of normal hovering flight part Ⅱ:model implementation and evaluation[J]. Journal of the Royal Society Interface, 2014, 11(94):20131197. doi: 10.1098/rsif.2013.1197.
    [41] Nabawy M R A, Crowther W J. On the quasi-steady aerodynamics of normal hovering flight part I:the induced power factor[J]. Journal of the Royal Society Interface, 2014, 11(94):20131196. doi:10.1098/rsif. 2013.1196.
    [42] Liu K, Li D C, Xiang J W. Reduced-order modeling of unsteady aerodynamics of a flapping wing based on the Volterra theory[J]. Results in Physics, 2017, 7(2017):2451-2457.
    [43] Hassanalian M, Throneberry G, Abdelkefi A. Wing shape and dynamic twist design of bio-inspired nano air vehicles for forward flight purposes[J]. Aerospace Science and Technology, 2017, 68(2017):518-529.
    [44] Nguyen A T, Kim J K, Han J S, et al. Extended unsteady vortex-lattice method for insect flapping wings[J]. Journal of Aircraft, 2016, 53(6):1709-1718.
    [45] Ghommem M, Collier N, Niemi A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1):274-292.
    [46] Sun M, Du G. Lift and power requirements of hovering insect flight[J]. Acta Mechanica Sinica, 2003, 19(5):458-469.
    [47] Aono H, Liang F, Liu H. Near-and far-field aerodynamics in insect hovering flight:an integrated computational study[J]. Journal of Experimental Biology, 2008, 211(2):239-257.
    [48] Wu J H, Sun M. The influence of the wake of a flapping wing on the production of aerodynamic forces[J]. Acta Mechanica Sinica, 2005, 21(5):411-418.
    [49] Platzer M F, Jones K D, Young J, et al. Flapping-wing aerodynamics:Progress and challenges[J]. Aiaa Journal, 2008, 46(9):2136-2149.
    [50] Shyy W, Aono H, Chimakurthi S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7):284-327.
    [51] Sun M. Insect flight dynamics:Stability and control[J]. Reviews of Modern Physics, 2014, 86(2):615-646.
    [52] Chin D D, Lentink D. Flapping wing aerodynamics:from insects to vertebrates[J]. Journal of Experimental Biology, 2016, 219(7):920-932.
    [53] Shyy W, Lin H. Flapping wings and aerodynamic lift:The role of leading-edge vortices[J]. Aiaa Journal, 2007, 45(12):2817-2819.
    [54] Wojcik C J, Buchholz J H J. Vorticity transport in the leading-edge vortex on a rotating blade[J]. Journal of Fluid Mechanics, 2014, 743(2014):249-261.
    [55] Ristroph L, Bergou A J, Guckenheimer J, et al. Paddling mode of forward flight in insects[J]. Physical Review Letters, 2011, 106(17):178103. doi: 10.1103/PhysRevLett.106.178103.
    [56] Fei Y H J, Yang J T. Importance of body rotation during the flight of a butterfly[J]. Physical Review E, 2016, 93(3):033124. doi: 10.1103/PhysRevE.93.033124.
    [57] Meng X G, Sun M. Wing and body kinematics of forward flight in drone-flies[J]. Bioinspiration & Biomimetics, 2016, 11(5):056002. doi: 10.1088/1748-3190/11/5/056002.
    [58] 朱建阳. 扑动轨迹对扑翼气动特性影响的数值研究[J]. 工程力学, 2016, 33(1):246-251. Zhu J Y. Numerical study on the effect of kinematics of a flapping wing on its aerodynamic performance[J].Engineering Mechanics, 2016, 33(1):246-251. (in Chinese)
    [59] Crandell K E, Tobalske B W. Kinematics and aerodynamics of avian upstrokes during slow flight[J]. Journal of Experimental Biology, 2015, 218(16):2518-2527.
    [60] Wang S Z, Zhang X, He G W, et al. Lift enhancement by dynamically changing wingspan in forward flapping flight[J]. Physics of Fluids, 2014, 26(6):061903. doi: 10.1063/1.4884130.
    [61] Crandell K E, Tobalske B W. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing[J]. Journal of Experimental Biology, 2011, 214(11):1867-1873.
    [62] Ros I G, Bassman L C, Badger M A, et al. Pigeons steer like helicopters and generate down-and upstroke lift during low speed turns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):19990-19995.
    [63] Hubel T Y, Hristov N I, Swartz S M, et al. Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat[J]. Journal of the Royal Society Interface, 2012, 9(71):1120-1130.
    [64] Song J L, Luo H X, Hedrick T L. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird[J]. Journal of the Royal Society Interface, 2014, 11(98):20140541. doi: 10.1098/rsif.2014.0541.
    [65] Hedrick T L, Tobalske B W, Ros I G, et al. Morphological and kinematic basis of the hummingbird flight stroke:scaling of flight muscle transmission ratio[J]. Proceedings of the Royal Society B-Biological Sciences, 2012, 279(1735):1986-1992.
    [66] Ennos A R. The inertial cause of wing rotation in diptera[J]. Journal of Experimental Biology, 1988, 140(1):161-169.
    [67] Song J L, Tobalske B W, Powers D R, et al. Three-dimensional simulation for fast forward flight of a calliope hummingbird[J]. Royal Society Open Science, 2016, 3(6):160230. doi: 10.1098/rsos.160230.
    [68] Warrick D R, Tobalske B W, Powers D R. Lift production in the hovering hummingbird[J]. Proceedings of the Royal Society B-Biological Sciences, 2009, 276(1674):3747-3752.
    [69] Muijres F T, Johansson L C, Hedenstrom A. Leading edge vortex in a slow-flying passerine[J]. Biology Letters, 2012, 8(4):554-557.
    [70] Muijres F T, Johansson L C, Barfield R, et al. Leading-edge vortex improves lift in slow-flying bats[J]. Science, 2008, 319(5867):1250-1253.
    [71] Florian T M, Johansson L C, York W, et al. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds[J]. Bioinspiration & Biomimetics, 2014, 9(2):025006.
    [72] Riskin D K, Willis D J, Iriarte-Diaz J, et al. Quantifying the complexity of bat wing kinematics[J]. Journal of Theoretical Biology, 2008, 254(3):604-615.
    [73] Hubel T Y, Riskin D K, Swartz S M, et al. Wake structure and wing kinematics:the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis[J]. Journal of Experimental Biology, 2010, 213(20):3427-3440.
    [74] Henningsson P, Muijres F T, Hedenstrom A. Time-resolved vortex wake of a common swift flying over a range of flight speeds[J]. Journal of the Royal Society Interface, 2011, 8(59):807-816.
    [75] Hakansson J, Hedenstrom A, Winter Y, et al. The wake of hovering flight in bats[J]. Journal of the Royal Society Interface, 2015, 12(109):20150357. doi: 10.1098/rsif.2015.0357.
    [76] Withers P C. An aerodynamic analysis of bird wings as fixed aerofoils[J]. Journal of Experimental Biology, 1981, 90(1):143(1):143-162.
    [77] Nakata T, Liu H. Aerodynamic performance of a hovering hawkmoth with flexible wings:a computational approach[J]. Proceedings of the Royal Society B-Biological Sciences, 2012, 279(1729):722-731.
    [78] Harbig R R, Sheridan J, Thompson M C. Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms[J]. Journal of Fluid Mechanics, 2013, 717(2013):166-192.
    [79] Garmann D J, Visbal M R. Dynamics of revolving wings for various aspect ratios[J]. Journal of Fluid Mechanics, 2014, 748(2014):932-956.
    [80] Harbig R R, Sheridan J, Thompson M C. The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight[J]. Journal of Fluid Mechanics, 2014, 751(2014):71-105.
    [81] Johansson L C, Engel S, Kelber A, et al. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth[J]. Scientific Reports, 2013, 3(2013):03264. doi: 10.1038/srep03264.
    [82] Han J S, Chang J W, Cho H K. Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover[J]. Experiments in Fluids, 2015, 56(9):181. doi: 10.1007/s00348-015-2049-9.
    [83] Kruyt J W, Quicazan-Rubio E M, Van Heijst G F, et al. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors[J]. Journal of the Royal Society Interface, 2014, 11(99):20140585. doi: 10.1098/rsif.2014.0585.
    [84] Kruyt J W, Van Heijst G F, Altshuler D L, et al. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio[J]. Journal of the Royal Society Interface, 2015, 12(105):20150051. doi: 10.1098/rsif.2015.0051.
    [85] Srygley R B, Thomas A L R. Unconventional lift-generating mechanisms in free-flying butterflies[J]. Nature, 2002, 420(6916):660-664.
    [86] Yokoyama N, Senda K, Iima M, et al. Aerodynamic forces and vortical structures in flapping butterfly's forward flight[J]. Physics of Fluids, 2013, 25(2):021902. doi: 10.1063/1.4790882.
    [87] Bomphrey R J, Nakata T, Henningsson P, et al. Flight of the dragonflies and damselflies[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2016, 371(1704):20150389. doi:10.1098/rstb.2015. 0389.
    [88] Thielicke W, Stamhuis E J. The influence of wing morphology on the three-dimensional flow patterns of a flapping wing at bird scale[J]. Journal of Fluid Mechanics, 2015, 768(2015):240-260.
    [89] Lee S I, Kim J, Park H, et al. The function of the alula in avian flight[J]. Scientific Reports, 2015, 5(2015):9914. doi: 10.1038/srep09914.
    [90] Meng X G, Sun M. Aerodynamic effects of corrugation in flapping insect wings in forward flight[J]. Journal of Bionic Engineering, 2011, 8(2):140-150.
    [91] Meng X G, Xu L, Sun M. Aerodynamic effects of corrugation in flapping insect wings in hovering flight[J]. Journal of Experimental Biology, 2011, 214(3):432-444.
    [92] Du G, Sun M. Aerodynamic effects of corrugation and deformation in flapping wings of hovering hoverflies[J]. Journal of Theoretical Biology, 2012, 300:19-28.
    [93] Meng X G, Sun M. Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers[J]. Physics of Fluids, 2013, 25(7):071905. doi:10.1063/1. 4813804.
    [94] Brandt J, Doig G, Tsafnat N. Computational aerodynamic analysis of a Micro-CT based bio-realistic fruit fly wing[J]. Plos One, 2015, 10(5):0124824. doi: 10.1371/journal.pone.0124824.
    [95] Rajabi H, Ghoroubi N, Malaki M, et al. Basal complex and basal venation of odonata wings:Structural diversity and potential role in the wing deformation[J]. Plos One, 2016, 11(8):0160610. doi: 10.1371/journal.pone.0160610.
    [96] Van Bokhorst E, De Kat R, Elsinga G E, et al. Feather roughness reduces flow separation during low Reynolds number glides of swifts[J]. Journal of Experimental Biology, 2015, 218(20):3179-3191.
    [97] Watson G S, Watson J A, Cribb B W. Diversity of cuticular micro-and nanostructures on insects:properties, functions, and potential applications[J]. Annual Review of Entomology, 2017, 62(2017):185-205.
    [98] De Langre E. Effects of wind on plants[J]. Annual Review of Fluid Mechanics, 2008, 40(2008):141-168.
    [99] Favier J, Dauptain A, Basso D, et al. Passive separation control using a self-adaptive hairy coating[J]. Journal of Fluid Mechanics, 2009, 627(2009):451-483.
    [100] Slegers N, Heilman M, Cranford J, et al. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies[J]. Bioinspiration & Biomimetics, 2017, 12(1):1-12.
    [101] Polilov A A. Small is beautiful:features of the smallest insects and limits to miniaturization[J]. Annual Review of Entomology, 2015, 60(2015):103-121.
    [102] Takahashi H, Sato K, Nguyen M-D, et al. Characteristic evaluation of a bristled wing using mechanical models of a thrips wings with MEMS piezoresistive cantilevers[J]. Journal of Biomechanical Science and Engineering, 2015, 10(2):14-00233-14-00233.
    [103] Barta E, Weihs D. Creeping flow around a finite row of slender bodies in close proximity[J]. Journal of Fluid Mechanics, 2006, 551(2006):1-17.
    [104] Weihs D, Barta E. Comb wings for flapping flight at extremely low reynolds numbers[J]. Aiaa Journal, 2008, 46(1):285-288.
    [105] Davidi G, Weihs D. Flow around a comb wing in low-reynolds-number flow[J]. Aiaa Journal, 2012, 50(1):249-253.
    [106] Jones S K, Yun Y J J, Hedrick T L, et al. Bristles reduce the force required to ‘fling’ wings apart in the smallest insects[J]. Journal of Experimental Biology, 2016, 219(23):3759-3772.
    [107] Lee S H, Kim D. Aerodynamics of a translating comb-like plate inspired by a fairyfly wing[J]. Physics of Fluids, 29(8):081902. doi: 10.1063/1.4998434.
    [108] Lee S H, Lahooti M, Kim D. Aerodynamic characteristics of unsteady gap flow in a bristled wing[J]. Physics of Fluids, 2018, 30(7):071901. doi: 10.1063/1.5030693.
    [109] Huber J T, Noyes J S. A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods[J]. Journal of Hymenoptera Research, 2013, 32(2013):17-44.
    [110] 张云飞, 叶正寅, 谢飞. 展向柔性对扑翼推力影响原因的数值分析[J]. 工程力学, 2013, 30(2):419-426. Zhang Y F, Ye Z Y, Xie F. The numerical analysis of the reason for the effect of Spanwise flexibility on flapping wing thrust[J]. Engineering Mechanics, 2013, 30(2):419-426. (in Chinese)
    [111] Cheng X, Sun M. Wing-kinematics measurement and aerodynamics in a small insect in hovering flight[J]. Scientific Reports, 2016, 6(2016):25706. doi: 10.1038/srep25706.
    [112] Walker S M, Thomas A L R, Taylor G K. Deformable wing kinematics in free-flying hoverflies[J]. Journal of the Royal Society Interface, 2010, 7(42):131-142.
    [113] Walker S M, Thomas A L R, Taylor G K. Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies[J]. Journal of the Royal Society Interface, 2009, 6(33):351-366.
    [114] Mountcastle A M, Combes S A. Wing flexibility enhances load-lifting capacity in bumblebees[J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1759):20130531. doi:10.1098/rspb.2013. 0531.
    [115] Du G, Sun M. Effects of wing deformation on aerodynamic forces in hovering hoverflies[J]. Journal of Experimental Biology, 2010, 213(13):2273-2283.
    [116] Zheng L X, Hedrick T L, Mittal R. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies[J]. Plos One, 2013, 8(1):53060. doi: 10.1371/journal.pone.0053060.
    [117] 周超英, 朱建阳, 汪超, 等. 柔性扑翼气动性能的数值研究[J]. 工程力学, 2013, 30(5):13-18. Zhou C Y, Zhu J Y, Wang C, et al. Numerical study on the effect of flexiblity of a flapping wing on its aerodynamic perforwing on its aerodynamic performancemance[J]. Engineering Mechanics, 2013, 30(5):13-18. (in Chinese)
    [118] Dai H, Luo H X, Doyle J F. Dynamic pitching of an elastic rectangular wing in hovering motion[J]. Journal of Fluid Mechanics, 2012, 693:473-499.
    [119] Nakata T, Liu H. A fluid-structure interaction model of insect flight with flexible wings[J]. Journal of Computational Physics, 2012, 231(4):1822-1847.
    [120] Noda R, Nakata T, Liu H. Effects of wing deformation on aerodynamic performance of a revolving insect wing[J]. Acta Mechanica Sinica, 2014, 30(6):819-827.
    [121] Tanaka H, Whitney J P, Wood R J. Effect of flexural and torsional wing flexibility on lift generation in Hoverfly flight[J]. Integrative and Comparative Biology, 2011, 51(1):142-150.
    [122] Jones S K, Laurenza R, Hedrick T L, et al. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects[J]. Journal of Theoretical Biology, 2015, 384:105-120.
    [123] Santhanakrishnan A, Robinson A K, Jones S, et al. Clap and fling mechanism with interacting porous wings in tiny insect flight[J]. Journal of Experimental Biology, 2014, 217(21):3898-3909.
    [124] Sane S P. Neurobiology and biomechanics of flight in miniature insects[J]. Current Opinion in Neurobiology, 2016, 41:158-166.
    [125] Weis-Fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production[J]. Journal of Experimental Biology, 1973, 59(1):169.
    [126] Miller L A, Peskin C S. Flexible clap and fling in tiny insect flight[J]. Journal of Experimental Biology, 2009, 212(19):3076-3090.
    [127] Sun M, Yu X. Aerodynamic force generation in hovering flight in a tiny insect[J]. Aiaa Journal, 2006, 44(7):1532-1540.
    [128] Kolomenskiy D, Moffatt H K, Farge M, et al. Two-and three-dimensional numerical simulations of the clapfling-sweep of hovering insects[J]. Journal of Fluids and Structures, 2011, 27(5):784-791.
    [129] Arora N, Gupta A, Sanghi S, et al. Lift-drag and flow structures associated with the "clap and fling" motion[J]. Physics of Fluids, 2014, 26(7):071906. doi:10.1063/1. 4890221.
    [130] GÖtz K G. Course-control, metabolism and wing interference during ultralong tethered flight in drosophila melanogaster[J]. Journal of Experimental Biology, 1987, 128(1):35-46.
    [131] Percin M, Hu Y, Van Oudheusden B W, et al. Wing flexibility effects in clap-and-fling[J]. International Journal of Micro Air Vehicles, 2011, 3(4):217-227.
    [132] Sane S P. The aerodynamics of insect flight[J]. Journal of Experimental Biology, 2003, 206(23):4191-4208.
    [133] Cheng X, Sun M. Aerodynamic forces and flows of the full and partial clap-fling motions in insects[J]. Peerj, 2017, 5(2017):3002. doi: 10.7717/peerj.3002.
    [134] Murphy D W, Adhikari D, Webster D R, et al. Underwater flight by the planktonic sea butterfly[J]. Journal of Experimental Biology, 2016, 219(4):535-543.
    [135] Lian Y. Numerical Study of a Flapping Airfoil in Gusty Environments[C]. San Antonio, U.S.:27th AIAA Applied Aerodynamics Conference, 2009.
    [136] Zheng Y Y, Wu Y H, Tang H. Force measurements of flexible tandem wings in hovering and forward flights[J]. Bioinspiration & Biomimetics, 2015, 10(1):016021. doi: 10.1088/1748-3190/10/1/016021.
    [137] Yu X, Sun M. A computational study of the wing-wing and wing-body interactions of a model insect[J]. Acta Mechanica Sinica, 2009, 25(4):421-431.
    [138] Liang B, Sun M. Aerodynamic interactions between wing and body of a model insect in forward flight and maneuvers[J]. Journal of Bionic Engineering, 2013, 10(1):19-27.
    [139] Wan H, Dong H, Gai K. Computational investigation of cicada aerodynamics in forward flight[J]. Journal of The Royal Society Interface, 2015, 12(102):20141116. doi: 10.1098/rsif.2014.1116.
    [140] Johansson L C, Wolf M, Hedenstrom A. A quantitative comparison of bird and bat wakes[J]. Journal of the Royal Society Interface, 2010, 7(42):61-66.
    [141] Muijres F T, Johansson L C, Bowlin M S, et al. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds[J]. Plos One, 2012, 7(5):37335. doi: 10.1371/journal.pone.0037335.
    [142] Weimerskirch H, Martin J, Clerquin Y, et al. Energy saving in flight formation-Pelicans flying in a ‘V’ can glide for extended periods using the other birds' air streams[J]. Nature, 2001, 413(6857):697-698.
    [143] Sullivan R T. Insect swarming and mating[J]. The Florida Entomologist, 1981, 64(1):44-65.
    [144] Piksa K, Bogdanowicz W, Tereba A. Swarming of bats at different elevations in the Carpathian Mountains[J]. Acta Chiropterologica, 2011, 13(1):113-122.
    [145] Portugal S J, Hubel T Y, Fritz J, et al. Up wash exploitation and downwash avoidance by flap phasing in ibis formation flight[J]. Nature, 2014, 505(7483):399-402.
    [146] Davidovich H, Ribak G. Loaded flight in male Ischnura elegans and its relationship to copulatory flight[J]. Journal of Insect Physiology, 2018, 110:44-56.
    [147] Gao T, Lu X Y. Insect normal hovering flight in ground effect[J]. Physics of Fluids, 2008, 20(8):087101. doi: 10.1063/1.2958318.
    [148] Chen M W, Sun M. Wing/body kinematics measurement and force and moment analyses of the takeoff flight of fruitflies[J]. Acta Mechanica Sinica, 2014, 30(4):495-506.
    [149] Chen M W, Zhang Y L, Sun M. Wing and body motion and aerodynamic and leg forces during take-off in droneflies[J]. Journal of the Royal Society Interface, 2013, 10(89):20130808. doi: 10.1098/rsif.2013.0808.
    [150] Bimbard G, Kolomenskiy D, Bouteleux O, et al. Force balance in the take-off of a pierid butterfly:relative importance and timing of leg impulsion and aerodynamic forces[J]. Journal of Experimental Biology, 2013, 216(18):3551-3563.
    [151] Truong T V, Byun D, Kim M J, et al. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect[J]. Bioinspiration & Biomimetics, 2013, 8(3):036007. doi: 10.1088/1748-3182/8/3/036007.
    [152] Buchwald R, Dudley R. Limits to vertical force and power production in bumblebees (Hymenoptera:Bombus impatiens)[J]. Journal of Experimental Biology, 2010, 213(3):426-432.
    [153] Chai P, Millard D. Flight and size constraints:hovering performance of large hummingbirds under maximal loading[J]. The Journal of Experimental Biology, 1997, 200:2757-2763.
    [154] Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot[J]. Science, 2013, 340(6132):603-607.
    [155] Karasek M, Muijres F T, De Wagter C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407):1089-1094.
    [156] Zou Y, Zhang W P, Ke X J, et al. The design and microfabrication of a sub 100 mg insect-scale flapping-wing robot[J]. Micro & Nano Letters, 2017, 12(5):297-300.
    [157] Keennon M, Klingebiel K, Won H. Development of the Nano Hummingbird:A Tailless Flapping Wing Micro Air Vehicle[C]. Nashville, U.S.:50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
    [158] Mackenzie D. A flapping of wings[J]. Science, 2012, 335(6075):1430-1432.
    [159] Ramezani A, Chung S-J, Hutchinson S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3):2505. doi: 10.1126/scirobotics.aal2505.
    [160] Tay W B, Van Oudheusden B W, Bijl H. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method[J]. Bioinspiration & Biomimetics, 2014, 9(3):036001. doi: 10.1088/1748-3182/9/3/036001.
    [161] Wei X, Li D, Jiaqi J, et al. Experimental and numerical study of flapping wing rotary MAV[C]. 2017 IEEE International Conference on Unmanned Systems (ICUS), 2017:23-28.
    [162] Yi S, Li D, Jiaqi J, et al. Experimental and numerical study of flapping wing rotary MAV[C]. Beijing, China:2017 IEEE International Conference on Unmanned Systems, 2017.
    [163] Chen Y F, Helbling E F, Gravish N, et al. Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]. Hamburg, Germany:2015 Ieee/Rsj International Conference on Intelligent Robots and Systems, 2015.
    [164] Chen Y, Wang H, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science Robotics, 2017, 2(11):5619. doi: 10.1126/scirobotics.aao5619.
    [165] 杜晓旭, 张正栋. 四种扑动方式对水下扑翼推进性能影响数值分析[J]. 工程力学, 2018, 35(4):249-256. Du X X, Zhang Z D. Numerical analysis of influence of four flapping modes on propulsion performance of underwater flapping foils[J]. Engineering Mechanics, 2018, 35(4):249-256. (in Chinese)
    [166] Shrestha R, Benedict M, Hrishikeshavan V, et al. Hover performance of a small-scale helicopter rotor for flying on mars[J]. Journal of Aircraft, 2016, 53(4):1160-1167.
    [167] Bluman J E, Pohly J A, Sridhar M K, et al. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling[J]. Bioinspiration & Biomimetics, 2018, 13(4):046010. doi: 10.1088/1748-3190/aac876.
  • [1] 张照煌, 李魏魏.  座头鲸胸鳍前缘仿生叶片空气动力学特性研究 . 工程力学, 2020, 37(S): 376-379, 386. doi: 10.6052/j.issn.1000-4750.2019.04.S061
    [2] 朱建阳, 张加诚, 王钊.  仿生翼型对半主动扑翼捕能性能的影响 . 工程力学, 2019, 36(10): 223-228,237. doi: 10.6052/j.issn.1000-4750.2018.10.0555
    [3] 李尚斌, 林永峰, 樊枫.  倾转旋翼气动特性风洞试验与数值模拟研究 . 工程力学, 2018, 35(6): 249-256. doi: 10.6052/j.issn.1000-4750.2017.07.0561
    [4] 董国朝, 张建仁, 蔡春声, 韩艳.  侧风对超大型冷却塔内空气动力场的影响研究 . 工程力学, 2018, 35(2): 76-83. doi: 10.6052/j.issn.1000-4750.2016.09.0736
    [5] 杜晓旭, 张正栋.  四种扑动方式对水下扑翼推进性能影响数值分析 . 工程力学, 2018, 35(4): 249-256. doi: 10.6052/j.issn.1000-4750.2017.01.0031
    [6] 朱建阳.  扑动轨迹对扑翼气动特性影响的数值研究 . 工程力学, 2016, 33(1): 246-251. doi: 10.6052/j.issn.1000-4750.2014.06.0500
    [7] 刘雄, 梁湿.  风力机翼型在复合运动下的动态失速数值分析 . 工程力学, 2016, 33(12): 248-256. doi: 10.6052/j.issn.1000-4750.2015.04.0364
    [8] 刘雄, 梁湿, 陈严, 张石强, 陈淳.  风力机翼型动态失速气动特性仿真 . 工程力学, 2015, 32(3): 203-211. doi: 10.6052/j.issn.1000-4750.2014.03.0165
    [9] 张子健, 安国锋, 刘斌.  飞翼飞行器气动伺服弹性耦合动力学特性研究 . 工程力学, 2014, 31(11): 231-236. doi: 10.6052/j.issn.1000-4750.2013.05.0426
    [10] 周超英, 朱建阳, 汪超, 谢鹏.  柔性扑翼气动性能的数值研究 . 工程力学, 2013, 30(5): 13-18. doi: 10.6052/j.issn.1000-4750.2012.01.0028
    [11] 周超英, 纪文英, 张兴伟, 邓立君.  球头体逆向喷流减阻的数值模拟研究 . 工程力学, 2013, 30(1): 441-447. doi: 10.6052/j.issn.1000-4750.2011.06.0357
    [12] 张云飞, 叶正寅, 谢 飞.  展向柔性对扑翼推力影响原因的数值分析 . 工程力学, 2013, 30(2): 419-426. doi: 10.6052/j.issn.1000-4750.2011.08.0503
    [13] 梅元贵, 许建林, 赵鹤群, 沈瀛.  侧风环境下高速列车外部流场数值模拟方法研究 . 工程力学, 2012, 29(6): 253-258,278. doi: 10.6052/j.issn.1000-4750.2010.08.0578
    [14] 刘晓燕, 杨 超, 吴志刚.  适用于气动弹性的气动力自适应辨识方法 . 工程力学, 2010, 27(12): 201-205.
    [15] 杨智春, 党会学, 孙勇军, 孙 浩.  带开缝旋转圆筒固定小翼气动特性的数值模拟 . 工程力学, 2009, 26(11): 222-227.
    [16] 李永乐, 汪 斌, 黄 林, 廖海黎.  平板气动力的CFD模拟及参数研究 . 工程力学, 2009, 26(3): 207-211.
    [17] 张 伟, 葛耀君.  速度场演化结构非定常气动力 . 工程力学, 2009, 26(7): 192-204.
    [18] 罗 仁, 曾 京.  空气弹簧控制的摆式列车动力学仿真研究 . 工程力学, 2009, 26(3): 240-245.
    [19] 严 德, 杨 超, 万志强.  基于非线性气动力的横侧向静气动弹性分析 . 工程力学, 2008, 25(9): 0-228,.
    [20] 王立群, 符松, 宋文萍.  预测直升机旋翼气动噪声的新方法 . 工程力学, 2000, 17(2): 30-35.
  • 加载中
计量
  • 文章访问数:  181
  • HTML全文浏览量:  9
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2019-01-26
  • 刊出日期:  2019-04-25

扑翼空气动力学研究进展与应用

doi: 10.6052/j.issn.1000-4750.2018.03.0175
    基金项目:  国家自然科学基金面上项目(11572023)
    作者简介:

    向锦武(1964-),男,湖南人,教授,博士,博导,从事无人飞行器总体设计研究(E-mail:xiangjw@buaa.edu.cn);孙毅(1978-),男,陕西人,工程师,博士生,从事无人机总体技术与微型飞行器设计研究(E-mail:821522495@qq.com);申童(1993-),男,陕西人,博士生,从事微型扑翼气动特性研究(E-mail:shentong@buaa.edu.cn).

    通讯作者: 李道春(1980-),男,山东人,教授,博士,博导,从事飞行器气动弹性与微型飞行器设计研究(E-mail:lidc@buaa.edu.cn).
  • 中图分类号: V211.5

摘要: 昆虫、鸟类与蝙蝠等生物具有高超的飞行能力,是扑翼飞行器的主要模仿对象。近年来,扑翼空气动力学领域的研究取得了很大进展,该文主要对其主要研究成果进行综述,重点介绍扑翼空气动力学各研究方向的最新进展,包括昆虫、鸟类与蝙蝠扑翼的主要升力机制,翅膀形态学参数与微观结构、翅膀柔性与动态变形、翼-翼干扰、翼-身干扰、个体间干扰及地面效应等对扑翼气动特性的影响。同时还对仿生扑翼飞行器气动研究的新进展进行了介绍,并提出了扑翼空气动力学所面临的主要问题和挑战。

English Abstract

向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
引用本文: 向锦武, 孙毅, 申童, 李道春. 扑翼空气动力学研究进展与应用[J]. 工程力学, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
XIANG Jin-wu, SUN Yi, SHEN Tong, LI Dao-chun. RESEARCH PROGRESS AND APPLICATION OF FLAPPING WING AERODYNAMICS[J]. Engineering Mechanics, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
Citation: XIANG Jin-wu, SUN Yi, SHEN Tong, LI Dao-chun. RESEARCH PROGRESS AND APPLICATION OF FLAPPING WING AERODYNAMICS[J]. Engineering Mechanics, 2019, 36(4): 8-23. doi: 10.6052/j.issn.1000-4750.2018.03.0175
参考文献 (167)

目录

    /

    返回文章
    返回