留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究

徐世烺 陈超 李庆华 赵昕

徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
引用本文: 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
XU Shi-lang, CHEN Chao, LI Qing-hua, ZHAO Xin. NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES[J]. Engineering Mechanics, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
Citation: XU Shi-lang, CHEN Chao, LI Qing-hua, ZHAO Xin. NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES[J]. Engineering Mechanics, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147

超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究

doi: 10.6052/j.issn.1000-4750.2018.03.0147
基金项目: 国家自然科学基金项目(51678522);国家自然科学基金优秀青年科学基金项目(51622811)
详细信息
    作者简介:

    徐世烺(1953-),男,湖北人,教授,博士,博导,从事混凝土断裂力学、新型材料与新型结构研究(E-mail:slxu@zju.edu.cn);陈超(1993-),男,浙江人,硕士生,从事新型材料数值模拟研究(E-mail:ChaoChen.Daniel@outlook.com);赵昕(1989-),女,浙江人,博士生,从事新型材料防护冲击方面研究(E-mail:11212049@zju.edu.cn).

    通讯作者: 李庆华(1981-),女,河北人,教授,博士,博导,从事新材料结构方面研究(E-mail:liqinghua@zju.edu.cn).
  • 中图分类号: TU528.572

NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES

  • 摘要: 该文基于HJC本构模型,采用分离式霍普金森杆(SHPB)压杆系统,对掺有聚乙烯醇(PVA)纤维的超高韧性水泥基复合材料(PVA-UHTCC)的动态压缩力学性能进行了数值模拟研究。首先,通过系统分析确定了21项HJC本构参数,并验证了模拟的正确性。基于此,通过分析5组应变率下材料的动态压缩应力-应变曲线讨论了峰值应力动态增强因子DIF的应变率效应,并通过LS-DYNA软件探讨了破坏过程、破坏形态与应变率的关系。模拟结果表明:随着应变率的增加,PVA-UHTCC材料的动态压缩应力-应变曲线呈现由应变硬化主导向着损伤软化主导的转变趋势;此外,PVA-UHTCC峰值应力动态增强因子DIF具有明显的应变率效应,其值随着应变率增加而增加,且在不同应变率区间呈现不同敏感性;通过量化DIF这种分区敏感性,提出了适用于PVA-UHTCC材料的DIF与应变率对数lgε分段函数式;同时,通过对比钢纤维增强水泥基材料(SFRCC)和普通混凝土材料,发现PVA-UHTCC材料的DIF应变率敏感性较低。最后,通过LS-DYNA软件模拟试件裂缝扩展和压碎破坏过程,更好地理解了PVA-UHTCC材料动态压缩破坏行为。
  • [1] Li V C, Leung C Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites[J]. ASCE Journal of Engineering Mechanics, 1992, 188(11):2246-2264.
    [2] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60. Xu Shilang, Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41(6):45-60. (in Chinese)
    [3] 徐世烺, 蔡向荣. 超高韧性纤维增强水泥基复合材料基本力学性能[J]. 水利学报, 2009, 40(9):1055-1063. Xu Shilang, Cai Xiangrong. Basic mechanical performance of ultra high toughness cementitious composites[J]. Journal of Hydraulic Engineering, 2009, 40(9):1055-1063. (in Chinese)
    [4] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊2):23-67. Li Qinghua, Xu Shilang. Performance and application of ultra high toughness cementitious composite:a review[J]. Engineering Mechanics, 2009, 26(Suppl 2):23-67. (in Chinese)
    [5] 刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连:大连理工大学, 2012:95-112. Liu Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Dalian:Dalian University of Technology, 2012:95-112. (in Chinese)
    [6] 李庆华, 赵昕, 徐世烺. 纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究[J]. 工程力学, 2017, 34(2):85-93. Li Qinghua, Zhao Xin, Xu Shilang. Impact compression properties of nano-SiO2 modified ultra high toughness cementitious composites using a split Hopkinson pressure bar[J]. Engineering Mechanics, 2017, 34(2):85-93. (in Chinese)
    [7] 蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16. Cai Xiangrong, Xu Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics, 2010, 27(1):8-16. (in Chinese)
    [8] 杜修力, 窦国钦, 李亮, 等. 纤维高强混凝土的动态力学性能试验研究[J]. 工程力学, 2011, 28(4):138-144. Du Xiuli, Dou Guoqin, Li Liang, et al. Experimental study on dynamic mechanical properties of fiber reinforced high strength concrete[J]. Engineering Mechanics, 2011, 28(4):138-144. (in Chinese)
    [9] 焦楚杰, 李祯, 高乐. 混凝土SHPB试验的数值模拟[J]. 工程力学, 2010, 27(增刊2):196-200. Jiao Chujie, Li Zhen, Gao Le. Numerical simulation of SHPB test of concrete[J]. Engineering Mechanics, 2010, 27(Suppl 2):196-200. (in Chinese)
    [10] 陈猛, 李艺, 卢哲安, 等. 混杂纤维混凝土动态压缩性能试验及数值模拟研究[J]. 混凝土, 2015(8):91-94. Chen Meng, Li Yi, Lu Zhean, et al. Study on dynamic compression properties and numerical simulation of hybrid fiber reinforced concrete[J]. Concrete, 2015(8):91-94. (in Chinese)
    [11] 张文华, 张云升. 超高性能水泥基复合材料动态冲击性能及数值模拟[J]. 混凝土, 2015(10):60-63. Zhang Wenhua, Zhang Yunsheng. Dynamic impact properties and simulation of ultra-high performance of cementitious composites[J]. Concrete, 2015(10):60-63. (in Chinese)
    [12] Lv T H, Chen X W, Chen G. The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen[J]. Construction and Building Materials, 2018, 160:744-764.
    [13] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Michael J M. Proceedings of the 14th International Symposium on Ballistics. Sundbyberg:National Defence Research Establishment, 1993.
    [14] Polanco-Loria M, Hopperstad O S, Børvik T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model[J]. International Journal of Impact Engineering, 2008, 35(5):290-303.
    [15] Rong Zhidan, Sun Wei. Experimental and numerical investigation on the dynamic tensile behavior of ultra-high performance cement based composites[J]. Construction and Building Materials, 2012, 31:168-173.
    [16] Kong Xiangzhen, Fang Qin, Wu Hao, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model[J]. International Journal of Impact Engineering, 2016, 95:61-71.
    [17] 高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州:浙江大学, 2016:108-129. Gao Xiang. Experimental study on ultra-high toughness cementitious-composites with nano-SiO2[D]. Hangzhou:Zhejiang University, 2016:108-129. (in Chinese)
    [18] 任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击, 2016, 35(18):9-16. Ren Genmao, Wu Hao, Fang Qin, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18):9-16. (in Chinese)
    [19] 熊益波, 陈剑杰, 胡永乐, 等. 混凝土JohnsonHolmquist本构模型关键参数研究[J]. 工程力学, 2012, 29(1):121-127. Xiong Yibo, Chen Jianjie, Hu Yongle, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete[J]. Engineering Mechanics, 2012, 29(1):121-127. (in Chinese)
    [20] 陈星明, 刘彤, 肖正学. 混凝土HJC模型抗侵彻参数敏感性数值模拟研究[J]. 高压物理学报, 2012, 26(3):313-318. Chen Xingming, Liu Tong, Xiao Zhengxue. Numerical simulation research on HJC constitutive model sensitivity of penetration resistance of concrete[J]. Chinese Journal of High Pressure Physics, 2012, 26(3):313-318. (in Chinese)
    [21] 巫绪涛, 李耀, 李和平. 混凝土HJC本构模型参数的研究[J]. 应用力学学报, 2010, 27(2):340-344. Wu Xutao, Li Yao, Li Heping. Investigation on HJC constitutive model of concrete[J]. Chinese Journal of Applied Mechanics, 2010, 27(2):340-344. (in Chinese)
    [22] 吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究[J]. 计算力学学报, 2015, 32(6):789-795. Wu Sai, Zhao Junhai, Wang Juan, et al. Numerical analysis on HJC parameters of concrete using SHPB test[J]. Chinese Journal of Computational Mechanics, 2015, 32(6):789-795. (in Chinese)
    [23] 李艳, 王伟伟, 温从格. ECC常规三轴受压力学性能试验研究[J]. 混凝土, 2016(1):59-63. Li Yan, Wang Weiwei, Wen Congge. Experiment study on mechanical performance of ECC under conventional triaxial compression[J]. Concrete, 2016(1):59-63. (in Chinese)
    [24] Wu Zemei, Shi Caijun, He Wen, et al. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements[J]. Cement and Concrete Composites, 2017, 79:148-157.
    [25] 曹吉星. 钢纤维混凝土的动态本构模型及其有限元方法[D]. 成都:西南交通大学, 2011:49-53.Cao Jixing. Dynamic constitutive model of steel fiber reinforced concrete and its finite element method[D]. Chengdu:Southwest Jiaotong University, 2011:49-53. (in Chinese)
    [26] 崔昭. 钢-PVA混杂纤维混凝土动态本构模型及其有限元分析[D]. 广州:华南理工大学, 2016:38-42. Cui Zhao. Dynamic constitutive model and finite element analysis of steel-PVA hybrid fiber concrete[D]. Guangzhou:South China University of Technology, 2016:38-42. (in Chinese)
    [27] Li Qinghua, Zhao Xin, Xu Shilang, et al. Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125:490-500.
    [28] Wang Shasha, Le H T N, Poh L H, et al. Effect of high strain rate on compressive behavior of strain-hardening cement composite in comparison to that of ordinary fiber-reinforced concrete[J]. Construction and Building Materials, 2017, 136:31-43.
    [29] 万世强. 钢-PVA混杂纤维增强水泥基复合材料冲击特性研究[D]. 哈尔滨:哈尔滨工业大学, 2016:72-73. Wan Shiqiang. The impact performance experimental study of steel and PVA hybrid fiber reinforced cementitious composites[D]. Harbin:Harbin Institute of Technology, 2016:72-73. (in Chinese)
    [30] 丁彦江. 钢-PVA混杂纤维增强水泥基复合材料冲击压缩动力性能试验研究[D]. 广州:华南理工大学, 2014:40-44. Ding Yanjiang. The shock compression dynamic performance experimental study of Steel and PVA hybrid fiber reinforced cement matrix composites[D]. Guangzhou:South China University of Technology, 2014:40-44. (in Chinese)
    [31] Su Haoyang, Xu Jinyu. Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load[J]. Construction and Building Materials, 2013, 45:306-313.
    [32] Rong Zhidan, Sun Wei, Zhang Yunsheng. Dynamic compression behavior of ultra-high performance cement based composites[J]. International Journal of Impact Engineering, 2010, 31:515-520.
  • [1] 解学峰, 杨易.  一种通用高层建筑模型烟囱效应的数值模拟分析 . 工程力学, 2020, 37(3): 217-227. doi: 10.6052/j.issn.1000-4750.2019.05.0251
    [2] 金浏, 杨旺贤, 余文轩, 杜修力.  基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析 . 工程力学, 2020, 37(3): 56-65. doi: 10.6052/j.issn.1000-4750.2019.01.0012
    [3] 金浏, 郝慧敏, 张仁波, 杜修力.  高温下混凝土动态压缩行为细观数值研究 . 工程力学, 2019, 36(6): 70-78,118. doi: 10.6052/j.issn.1000-4750.2018.01.0041
    [4] 罗威, 肖云逸, 何栋尔, 章子华.  快速荷载下CFRP-高温后混凝土界面正拉粘结性能试验 . 工程力学, 2018, 35(S1): 307-312,324. doi: 10.6052/j.issn.1000-4750.2017.06.S059
    [5] 王国盛, 路德春, 杜修力, 李萌, 穆嵩.  混凝土材料真实动态强度及率效应机理研究 . 工程力学, 2018, 35(6): 58-67. doi: 10.6052/j.issn.1000-4750.2017.02.0101
    [6] 李潇, 方秦, 孔祥振, 吴昊.  数值模拟中混凝土类材料应变率效应曲线的惯性效应修正 . 工程力学, 2018, 35(12): 46-53. doi: 10.6052/j.issn.1000-4750.2017.10.0764
    [7] 李潇, 方秦, 孔祥振, 吴昊.  砂浆材料SHPB实验及惯性效应的数值模拟研究 . 工程力学, 2018, 35(7): 187-193. doi: 10.6052/j.issn.1000-4750.2017.03.0244
    [8] 李艳, 范文, 赵均海, 翟越.  中低速长杆弹侵彻半无限岩石靶的动态响应研究 . 工程力学, 2017, 34(9): 139-149. doi: 10.6052/j.issn.1000-4750.2016.04.0334
    [9] 康翔杰, 刘艳辉, 许浒, 赵世春, 余志祥.  低速冲击碰撞有限元分析中混凝土动态破坏面修正方法 . 工程力学, 2016, 33(3): 135-142. doi: 10.6052/j.issn.1000-4750.2014.08.0681
    [10] 曹健伟, 方秦, 龚自明, 吴昊.  商用客机对核安全壳撞击破坏效应的数值模拟分析 . 工程力学, 2014, 31(9): 63-70. doi: 10.6052/j.issn.1000-4750.2013.03.0255
    [11] 许斌, 曾翔.  钢筋混凝土长柱快速轴心受压试验与模拟研究 . 工程力学, 2014, 31(4): 210-217. doi: 10.6052/j.issn.1000-4750.2012.10.0811
    [12] 曾翔, 许斌.  考虑箍筋约束效应的快速轴压加载下钢筋混凝土短柱性能数值分析 . 工程力学, 2014, 31(9): 190-197. doi: 10.6052/j.issn.1000-4750.2013.04.0325
    [13] 余为, 李慧剑, 梁希, 张涛.  金属半球壳压缩力学性能实验和模拟研究 . 工程力学, 2013, 30(11): 260-265. doi: 10.6052/j.issn.1000-4750.2012.07.0508
    [14] 孔晓鹏, 蒋志刚, 晏麓晖, 陈斌.  陶瓷复合装甲粘结层效应和抗多发打击性能的数值模拟研究 . 工程力学, 2012, 29(2): 251-256.
    [15] 张敏思, 王述红, 杨 勇.  节理岩体本构模型数值模拟及其验证 . 工程力学, 2011, 28(5): 26-030.
    [16] 焦楚杰, 李 祯, 高 乐.  混凝土SHPB试验的数值模拟 . 工程力学, 2010, 27(增刊Ⅱ): 196-200.
    [17] 田杰, 胡时胜.  基体性能对泡沫铝力学行为的影响 . 工程力学, 2006, 23(8): 168-171,.
    [18] 王焕然, 谢书港, 陈大年, 俞宇颖, 刘国庆.  试论镁铝合金高应变率单轴压缩拟合本构关系的代入校核 . 工程力学, 2006, 23(9): 179-183.
    [19] 胡王乐元, 周力行, 时铭显, 张健.  旋风分离器内三维强旋湍流流动数值模拟的修正压力应变项模型 . 工程力学, 2005, 22(5): 83-88.
    [20] 任浩雷, 刘元镛, 矫桂琼.  含预制分层损伤复合材料层合板在压缩载荷下破坏过程和剩余强度的模拟 . 工程力学, 2002, 19(6): 110-114.
  • 加载中
计量
  • 文章访问数:  182
  • HTML全文浏览量:  1
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2019-06-28
  • 刊出日期:  2019-09-25

超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究

doi: 10.6052/j.issn.1000-4750.2018.03.0147
    基金项目:  国家自然科学基金项目(51678522);国家自然科学基金优秀青年科学基金项目(51622811)
    作者简介:

    徐世烺(1953-),男,湖北人,教授,博士,博导,从事混凝土断裂力学、新型材料与新型结构研究(E-mail:slxu@zju.edu.cn);陈超(1993-),男,浙江人,硕士生,从事新型材料数值模拟研究(E-mail:ChaoChen.Daniel@outlook.com);赵昕(1989-),女,浙江人,博士生,从事新型材料防护冲击方面研究(E-mail:11212049@zju.edu.cn).

    通讯作者: 李庆华(1981-),女,河北人,教授,博士,博导,从事新材料结构方面研究(E-mail:liqinghua@zju.edu.cn).
  • 中图分类号: TU528.572

摘要: 该文基于HJC本构模型,采用分离式霍普金森杆(SHPB)压杆系统,对掺有聚乙烯醇(PVA)纤维的超高韧性水泥基复合材料(PVA-UHTCC)的动态压缩力学性能进行了数值模拟研究。首先,通过系统分析确定了21项HJC本构参数,并验证了模拟的正确性。基于此,通过分析5组应变率下材料的动态压缩应力-应变曲线讨论了峰值应力动态增强因子DIF的应变率效应,并通过LS-DYNA软件探讨了破坏过程、破坏形态与应变率的关系。模拟结果表明:随着应变率的增加,PVA-UHTCC材料的动态压缩应力-应变曲线呈现由应变硬化主导向着损伤软化主导的转变趋势;此外,PVA-UHTCC峰值应力动态增强因子DIF具有明显的应变率效应,其值随着应变率增加而增加,且在不同应变率区间呈现不同敏感性;通过量化DIF这种分区敏感性,提出了适用于PVA-UHTCC材料的DIF与应变率对数lgε分段函数式;同时,通过对比钢纤维增强水泥基材料(SFRCC)和普通混凝土材料,发现PVA-UHTCC材料的DIF应变率敏感性较低。最后,通过LS-DYNA软件模拟试件裂缝扩展和压碎破坏过程,更好地理解了PVA-UHTCC材料动态压缩破坏行为。

English Abstract

徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
引用本文: 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
XU Shi-lang, CHEN Chao, LI Qing-hua, ZHAO Xin. NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES[J]. Engineering Mechanics, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
Citation: XU Shi-lang, CHEN Chao, LI Qing-hua, ZHAO Xin. NUMERICAL SIMULATION ON DYNAMIC COMPRESSIVE BEHAVIOR OF ULTRA-HIGH TOUGHNESS CEMENTITIOUS-COMPOSITES[J]. Engineering Mechanics, 2019, 36(9): 50-59. doi: 10.6052/j.issn.1000-4750.2018.03.0147
参考文献 (32)

目录

    /

    返回文章
    返回