留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计

汪超 谢能刚 黄璐璐

汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
引用本文: 汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
WANG Chao, XIE Neng-gang, HUANG Lu-lu. DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION[J]. Engineering Mechanics, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
Citation: WANG Chao, XIE Neng-gang, HUANG Lu-lu. DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION[J]. Engineering Mechanics, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119

基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计

doi: 10.6052/j.issn.1000-4750.2018.03.0119
基金项目: 国家自然科学基金项目(61375068);安徽省科技攻关面上项目(1704a0902008)
详细信息
    作者简介:

    汪超(1986-),男,安徽合肥人,讲师,博士生,主要从事等几何分析和结构优化设计研究(E-mail:cw2013@ahut.edu.cn);黄璐璐(1992-),男,安徽六安人,硕士生,主要从事等几何分析研究(E-mail:luluhuangedu@aliyun.com).

    通讯作者: 谢能刚(1971-),男,安徽当涂人,教授,博士,主要从事现代设计方法和高性能算法研究(E-mail:xieng@ahut.edu.cn).
  • 中图分类号: TH122;TP391.9

DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION

  • 摘要: 为了解决带孔结构形状优化问题,提出了一种将扩展等几何分析方法和混沌离子运动算法相结合的优化求解模式。针对带孔结构的力学计算,采用扩展等几何分析方法,以几何体外轮廓划分背景网格,利用非均匀有理B样条描述带孔边界,其中在劲度矩阵组装过程中,孔内区域不做积分。另外,为获得高精度的积分计算,与孔边界相关的单元采用自适应四叉树细化规则。在优化模型中,以描述结构形状的控制点作为设计变量,以结构质量最小作为优化目标;利用离子运动优化算法代替传统的敏感性移动渐进法对优化模型进行求解。带孔无限平板算例的扩展等几何分析计算结果和转矩臂结构优化算例的计算结果证明了本文方法的有效性。
  • [1] Wall W, Frenzel M A, Cyron C. Isogeometric structural shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(30-40):2976-2988.
    [2] Sun S H, Yu T T, Nguyen T T, et al. Structural shape optimization by IGABEM and particle swarm optimization algorithm[J]. Engineering Analysis with Boundary Elements, 2018, 88:26-40.
    [3] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620.
    [4] Asareh I, Yoon Y C, Song J H. A numerical method for dynamic fracture using the extended finite element method with non-nodal enrichment parameters[J]. International Journal of Impact Engineering, 2018, 121:63-76.
    [5] Sukumar N, Chopp D L, Moës N, et al. Modeling holes and inclusions by level sets in the extended finite-element method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46/47):6183-6200.
    [6] Duysinx P, Miegroet L V, Jacobs T, et al. Generalized shape optimization using X-FEM and level set methods[C]//IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials. Dordrecht:Springer, 2006:23-32.
    [7] Miegroet L V, Jacobs T, Duysinx P. Recent developments in fixed mesh optimization with XFEM and level set description[J]. Journal of Physics C:Solid State Physics, 2007, 12(7):1239-1244.
    [8] Miegroet L V, Duysinx P. Stress concentration minimization of 2D Filets using X-FEM and level set description[J]. Structural and Multidisciplinary Optimization, 2007, 33(4/5):425-438.
    [9] Wei P, Wang M Y, Xing X H. A study on X-FEM in continuum structural optimization using level set model[J]. Computer Aided Design, 2010, 42(8):708-719.
    [10] Hughes T J R, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39/41):4135-4195.
    [11] 薛冰寒, 林皋, 胡志强, 等. 求解摩擦接触问题的IGA-B可微方程组方法[J]. 工程力学, 2016, 33(10):35-43. Xue Binghan, Lin Gao, Hu Zhiqiang, et al. Analysis of frictional contact mechanics problems by IGA-B differential equation method[J]. Engineering Mechanics, 2016, 33(10):35-43. (in Chinese)
    [12] Lieu Q X, Lee J, Lee D, et al. Shape and size optimization of functionally graded sandwich plates using isogeometric analysis and adaptive hybrid evolutionary firefly algorithm[J]. Thin-Walled Structures, 2018, 124:588-604.
    [13] Benson D J, Bazilevs Y, Luycker D E, et al. A generalized finite element formulation for arbitrary basis functions:From isogeometric analysis to XFEM[J]. International Journal for Numerical Methods in Engineering, 2010, 83(6):765-785.
    [14] Haasemann G, Kastner M, Pruger S, et al. Development of a quadratic finite element formulation based on the XFEM and NURBS[J]. International Journal for Numerical Methods in Engineering, 2011, 86(4/5):598-617.
    [15] Luycker D E, Benson D J, Belytschko T, et al. X-FEM in isogeometric analysis for linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 2011, 87(6):541-565.
    [16] Ghorashi S S, Valizadeh N, Mohammadi S. Extended isogeometric analysis for simulation of stationary and propagating cracks[J]. International Journal for Numerical Methods in Engineering, 2011, 89(9):1069-1101.
    [17] Svanberg K. The method of moving asymptotes-a new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373.
    [18] Kennedy J, Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, Piscataway:IEEE Press, 1995, 4:1942-1948.
    [19] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4):69-77. Yan Xintong, Xu Longhe. Multi-objective optimization of genetic algorithm-based failure mode for reinforced concrete frame-shear wall structures[J]. Engineering Mechanics, 2018, 35(4):69-77. (in Chinese)
    [20] Dorigo M, Maniezzo V, Colorni A. The ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1):29-41.
    [21] Schnetzler B. Optimization by simulated annealing[J]. Science, 1992, 220(4598):671-680.
    [22] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1):108-132.
    [23] Krishnanand K N, Ghose D. Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions[J]. Swarm Intelligence, 2009, 3(2):87-124.
    [24] Yang X S. Firefly algorithms for multimodal optimization[J]. International Conference on Stochastic Algorithms:Foundations and Applications, 2009, 5792:169-178.
    [25] Yang X S, Cui Z, Xiao R, et al. Swarm intelligence and bio-inspired computation[M]. Netherlands:Elsevier, 2013:3-23.
    [26] Javidy B, Hatamlou A, Mirjalili S. Ions motion algorithm for solving optimization problems[J]. Applied Soft Computing, 2015, 32(3):72-79.
    [27] 过斌, 葛建立, 杨国来, 等. 三维实体结构NURBS等几何分析[J]. 工程力学, 2015, 32(9):42-48. Guo Bin, Ge Jianli, Yang Guolai, et al. NURBS-based isogeometric analysis of three-dimensional solid structures[J]. Engineering Mechanics, 2015, 32(9):42-48. (in Chinese)
    [28] Gu J M, Yu T T, Lich L V, et al. Multi-inclusions modeling by adaptive XIGA based on LR B-splines and multiple level sets[J]. Finite Elements in Analysis and Design, 2018, 148(1):48-66.
    [29] Cai S Y, Zhang W H, Zhu J H, et al. Stress constrained shape and topology optimization with fixed mesh:A B-spline finite cell method combined with level set function[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278(7):361-387.
    [30] Alatas B, Akin E, Ozer A B. Chaos embedded particle swarm optimization algorithm[J]. Chaos Solitons and Fractals, 2009, 40(4):1715-1734.
    [31] Xiang T, Liao X, Wong K W. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map[J]. Applied Mathematics and Computation, 2007, 190(2):1637-1645.
    [32] Coelho L D S, Mariani V C. A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch[J]. Chaos Solitons and Fractals, 2009, 39(2):510-518.
    [33] Zaslavskii G M. The simplest case of a strange attractor[J]. Physics Letters A, 1978, 69(3):145-147.
    [34] Bennett J, Botkin M. Structural shape optimization with geometric description and adaptive mesh refinement[J]. AIAA Journal, 1985, 23(3):458-464.
    [35] 蔡守宇, 张卫红, 李杨. 基于面片删减的带孔结构等几何形状优化方法[J]. 机械工程学报, 2013, 49(13):150-157. Cai Shouyu, Zhang Weihong, Li Yang. Isogeometric shape optimization method with patch removal for holed structures[J]. Journal of Mechanical Engineering, 2013, 49(13):150-157. (in Chinese)
  • [1] 何宜谦, 王霄腾, 祝雪峰, 杨海天, 薛齐文.  求解粘弹性问题的时域自适应等几何比例边界有限元法 . 工程力学, 2020, 37(2): 23-33. doi: 10.6052/j.issn.1000-4750.2019.01.0099
    [2] 夏阳, 廖科.  复杂三维曲梁结构的无闭锁等几何分析算法研究 . 工程力学, 2018, 35(11): 17-25. doi: 10.6052/j.issn.1000-4750.2017.08.0602
    [3] 朱柏洁, 张令心, 王涛.  轴力作用下剪切钢板阻尼器力学性能试验研究 . 工程力学, 2018, 35(S1): 140-144. doi: 10.6052/j.issn.1000-4750.2017.05.S024
    [4] 过斌, 葛建立, 杨国来, 吕加.  三维实体结构NURBS等几何分析 . 工程力学, 2015, 32(9): 42-48. doi: 10.6052/j.issn.1000-4750.2014.02.0124
    [5] 胡兴国, 程赫明.  周期性扩大框架的渐进结构优化方法研究 . 工程力学, 2013, 30(2): 24-29. doi: 10.6052/j.issn.1000-4750.2011.08.0533
    [6] 申秀丽, 齐晓东, 王荣桥, 胡殿印, 刘海.  航空发动机枞树形榫头/榫槽结构形状优化 . 工程力学, 2011, 28(12): 231-237.
    [7] 郭丽华, 汤文成, 袁 满.  基于并行混沌和复合形法的桁架结构形状优化 . 工程力学, 2011, 28(4): 151-157.
    [8] 刘书田, 林哲祺.  考虑作动器联接方式的结构形状控制优化 . 工程力学, 2009, 26(2): 227-233,.
    [9] 杨志军, 陈 新, 吴晓明, 陈塑寰.  结构拓扑修改静态重分析自适应迭代方法 . 工程力学, 2009, 26(11): 36-040,.
    [10] 隋允康, 张 政, 杜家政.  框架结构的截面和形状两级优化 . 工程力学, 2009, 26(8): 116-122.
    [11] 邱爱红, 龚曙光, 黄云清, 聂松辉.  基于虚载荷变量的无网格法形状优化的研究 . 工程力学, 2007, 24(9): 0-030,.
    [12] 王 栋, 李 晶.  空间桁架结构动力学形状优化设计 . 工程力学, 2007, 24(4): 0-134.
    [13] 隋允康, 李善坡.  改进的响应面方法在二维连续体形状优化中的应用 . 工程力学, 2006, 23(10): 1-6.
    [14] 刘毅, 金峰.  叠层复合材料方板多孔形状优化 . 工程力学, 2006, 23(5): 113-118.
    [15] 王元清, 梁宇钒, 石永久, 马赢.  单层带孔玻璃板孔边破坏应力的力学分析 . 工程力学, 2005, 22(5): 147-152.
    [16] 李芳, 凌道盛, 徐兴.  一种新的拱坝形状优化方法 . 工程力学, 2005, 22(4): 179-186.
    [17] 杨班权, 刘又文, 薛孟君, 张玉春.  集中载荷作用下弹性平面刚性夹杂的形状优化 . 工程力学, 2004, 21(6): 156-160.
    [18] 袁驷, 张亿果.  有限元线法求解非线性模型问题——Ⅱ.扭转杆的最优截面 . 工程力学, 1993, 10(2): 8-16.
    [19] 郑大素, 欧贵宝, 江允正.  用边界元法进行形状优化 . 工程力学, 1990, 7(2): 114-119.
    [20] 张扬, 沈家荫.  大型结构形状优化的边界元法 . 工程力学, 1988, 5(1): 108-116.
  • 加载中
计量
  • 文章访问数:  93
  • HTML全文浏览量:  1
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 修回日期:  2018-09-13
  • 刊出日期:  2019-04-25

基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计

doi: 10.6052/j.issn.1000-4750.2018.03.0119
    基金项目:  国家自然科学基金项目(61375068);安徽省科技攻关面上项目(1704a0902008)
    作者简介:

    汪超(1986-),男,安徽合肥人,讲师,博士生,主要从事等几何分析和结构优化设计研究(E-mail:cw2013@ahut.edu.cn);黄璐璐(1992-),男,安徽六安人,硕士生,主要从事等几何分析研究(E-mail:luluhuangedu@aliyun.com).

    通讯作者: 谢能刚(1971-),男,安徽当涂人,教授,博士,主要从事现代设计方法和高性能算法研究(E-mail:xieng@ahut.edu.cn).
  • 中图分类号: TH122;TP391.9

摘要: 为了解决带孔结构形状优化问题,提出了一种将扩展等几何分析方法和混沌离子运动算法相结合的优化求解模式。针对带孔结构的力学计算,采用扩展等几何分析方法,以几何体外轮廓划分背景网格,利用非均匀有理B样条描述带孔边界,其中在劲度矩阵组装过程中,孔内区域不做积分。另外,为获得高精度的积分计算,与孔边界相关的单元采用自适应四叉树细化规则。在优化模型中,以描述结构形状的控制点作为设计变量,以结构质量最小作为优化目标;利用离子运动优化算法代替传统的敏感性移动渐进法对优化模型进行求解。带孔无限平板算例的扩展等几何分析计算结果和转矩臂结构优化算例的计算结果证明了本文方法的有效性。

English Abstract

汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
引用本文: 汪超, 谢能刚, 黄璐璐. 基于扩展等几何分析和混沌离子运动算法的带孔结构形状优化设计[J]. 工程力学, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
WANG Chao, XIE Neng-gang, HUANG Lu-lu. DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION[J]. Engineering Mechanics, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
Citation: WANG Chao, XIE Neng-gang, HUANG Lu-lu. DESIGN AND SHAPE OPTIMIZATION OF HOLED STRUCTURE BY EXTENDED ISOGEOMETRIC ANALYSIS AND CHAOTIC ION MOTION OPTIMIZATION[J]. Engineering Mechanics, 2019, 36(4): 248-256. doi: 10.6052/j.issn.1000-4750.2018.03.0119
参考文献 (35)

目录

    /

    返回文章
    返回