余志武1,2,单 智1,2
(1. 中南大学土木工程学院,湖南,长沙 410001;2. 中南大学高速铁路建造技术国家工程实验室,湖南,长沙 410001)
摘 要:综述了混凝土微观损伤机理与随机损伤本构模型研究现状,介绍了本课题组在混凝土随机损伤本构模型方面取得的研究进展:进行了考虑 mode-II微裂缝的微观损伤机理分析,提出并验证了混凝土随机损伤本构模型——束-链模型,发展了测定多轴受压混凝土损伤变量的X-射线CT方法。最后,得到了相关研究结论。
关键词:混凝土;本构模型;随机;损伤;纤维束模型
混凝土,是一种由水泥石、骨料和二者之间的界面过渡区所构成的、包含大量初始微缺陷的三相复合材料。于是,混凝土的受力力学特征具有明显的非线性与随机性。其中,随机性特征主要表现为:以应变加载方式为例,加载过程中,任一应变处的应力大小呈现随机性,如在平均峰值应变处峰值应力表现出很强的随机性,即强度的离散性。
混凝土材料的复杂性、混凝土结构施工过程中人为或者环境等因素,导致结构初始状态具有随机性;而且疲劳荷载的长期作用,引起桥梁、海岸线混凝土工程结构等的材料和结构性能具有时变性和随机性。因此,进行这类结构经时性能理论研究的突破口,是如何有效地揭示其性能的随机性与时变性,即主要揭示混凝土结构疲劳随机损伤机理与性能随机演化规律。而开展混凝土随机损伤本构关系研究是揭示混凝土结构性能随机性与时变性的基础。
本文综述混凝土微观损伤机理与随机损伤本构模型研究现状,介绍本课题组在混凝土随机损伤本构模型研究方面取得的新进展。
1)细观损伤机理
混凝土材料复杂的组成,导致其在加载过程中经历极其复杂的损伤过程[1―10]。试验结果表明,微缺陷附近局部化应力导致 mode-I裂缝的产生与发展[11―16]。而文献[17]使用X-射线CT技术来研究混凝土的微裂缝机理,发现即使在轴向荷载作用下,局部应力也会产生平行于荷载的微裂缝,mode-II裂缝。有趣的是,这种mode-II裂缝导致了材料中不可恢复应变的产生[18]。
事实上,微缺陷周围的局部剪应力一般会导致其壁面上一系列裂缝的产生,这类裂缝被命名为mode-II微裂缝。在过去几十年,这种损伤行为已经吸引了固体力学领域大量研究者的关注[19―25]。研究表明,该微裂缝一般会导致mode-I裂缝尖端的钝化(包括脆性材料玻璃[25])和不可恢复变形,进而导致宏观不可恢复应变的产生。然而,目前有关混凝土不可恢复应变的文献却没有很好地考虑这种损伤行为。具体而言,首先,微观力学方法[26―34]认为不可恢复应变是由一系列其他裂缝扩展所产生的。其次,宏观力学方法[11―16]通常较少深入地考虑混凝土不可恢复应变产生发展的微观机理,因为其更关注材料宏观力学行为的准确模拟。
2)基于纤维束模型的混凝土随机损伤本构模型
一个世纪以来,一类简单的统计力学模型-纤维束模型(FBM),由于形式简单却又能表征大量力学行为,从而吸引了物理与工程领域的专家越来越广泛的关注。这类模型被用来表征mode-I裂缝所导致的弹性损伤与其他原因所导致的不可恢复变形损伤(塑性行为)。
关于弹性损伤,Peirce[35]于1926年首先在纺织工程领域引入纤维束模型,随后Daniels[36]进行了统计学分析;工程领域的学者们进一步针对不同的纤维断裂阈值分布进行了改进与分析[37―45];而物理领域的专家们进行了有关灾变崩塌/爆发分布与动力学特征的求解或分析[46―54]。
关于不可恢复损伤行为,学者们基于纤维束模型开展了一系列研究。物理与工程领域的学者们基于普通纤维束模型[47,54]或者连续损伤纤维束模型(CDFBM)[49,51]进行了准塑性行为的研究。尽管这些模型能够重现弹性损伤,即纤维断裂所导致的类似于塑性屈服平台的应力-应变响应[55],但是他们不能表征塑性变形或不可恢复变形的累积过程。其他研究者通过塑性纤维束模型(PFBM),例如 R-K-H模型[55―57]和其他模型[31,58―59],对不可恢复变形行为进行了研究。然而,R-K-H模型[55―57]不能考虑混凝土材料损伤劣化的物理本质,其与黏结界面剪切破坏行为的机理不一样。而在有些文献中,研究者假定大部分准脆性材料中的残余应力,是由裂缝面之间的黏聚应力和摩擦所导致的[59];但是,另一些研究者认为这些残余应力主要是由晶粒之间的滑移/位错所导致的[37,58],这就产生了机理认识的不一致。而且,另外一些文献中的塑性纤维束模型[31]过于复杂,不便于材料力学行为的表征模拟。
3)研究的不足
综上所述,已有微观机理研究对不可恢复变形损伤及其对非线性与随机性力学行为影响的认识不够深入,而且已有基于纤维束模型的随机损伤本构模型对随机不可恢复应变发展没有合理有效地表征。因此,有必要进一步深入开展加深对随机不可恢复应变产生发展的机理研究,并发展简便有效的表征方法。
1)mode-II微裂缝及其产生的原因
除了导致微元体有效承载面积降低与试件弹性模量劣化的 mode-I裂缝[1,2,60](图1),在初始微缺陷与 mode-I裂缝的壁面上通常存在另一类裂缝:mode-II微裂缝。如前所述,已有混凝土本构模型[11―16,26―34]通常没有很好地考虑 mode-II微裂缝。基于试验考察、原子模拟和力学分析,大量文献表明[19―25],裂缝壁面上及其附近区域由于局部剪应力的作用,产生了一系列mode-II微裂缝,并使得真实裂缝尖端钝化。这种裂缝的钝化行为是不可恢复的,具体表现为局部的不可恢复剪切变形,进而导致宏观不可恢复应变的产生。可以预计[61―63],加载过程中,mode-II微裂缝周边的局部约束状态是稳定的,从而不会导致mode-II裂缝主导的破坏;其也会导致能量释放,并且,也有助于释放 mode-I裂缝尖端集中的应力。
2)mode-II微裂缝对不可恢复应变的影响
考察微缺陷附近的区域,卸载后,由局部剪应力导致的mode-II微裂缝发展,促使材料中产生微观变形(见图1中的微观变形 b)与对应的不可恢复应变。于是,mode-II微裂缝导致了一部分的不可恢复应变发展[61―63]。
图1 单轴受拉情况下,混凝土微观损伤机理分析[61,63]
Fig. 1 Micro damage mechanism analysis of concrete under uniaxial tension[61,63]
3)不可恢复应变发展与不可恢复(变形)损伤
文献[29―30]认为混凝土内部由多条微细观裂缝演化所产生的裂缝表面之间的不可恢复摩擦滑移,导致了一种类似于塑性行为的宏观不可恢复应变。于是,其在上述微观不可恢复变形b中增加了一部分,即不可恢复变形b′(图1),并导致了相应的宏观不可恢复应变的产生。事实上,该损伤行为(图1)适用于多轴荷载作用下的混凝土[61―63]。
因此,可以认为混凝土中的不可恢复应变,是由mode-II微裂缝和不可恢复摩擦滑移二者共同导致的。本文把mode-II微裂缝和不可恢复摩擦滑移二者,定义为不可恢复(变形)损伤。为简便,暂不考虑[61―63]其他导致不可恢复应变的机理理论[26―28,31―34]。
4)微观损伤机理分析总结
通过分析多轴荷载作用下混凝土的微观损伤行为[61―63],得到如下结论:多轴荷载作用下混凝土的弹性损伤,即mode-I裂缝,主要导致了材料弹性模量劣化;而不可恢复(变形)损伤,即mode-II微裂缝与不可恢复摩擦滑移,主要导致了不可恢复应变发展。
2.2.1 混凝土束-链模型及其统计力学求解
1)束-链模型
基于上述微观损伤机理分析,为了表征混凝土中由随机不可恢复变形裂缝所导致的不可恢复应变产生发展,把不可恢复(应变)链模型引入到均匀荷载分布方式下的纤维束模型中[46―49,54―55],从而得到混凝土束-链模型(Fiber bundle-irreversible chain model, BCM)[63―64](图2)。并且,束-链模型的统计物理意义主要表现为,不断发展的纤维断裂,即弹性损伤,导致了有效受力面积的不断减小与宏观弹性模量的不断劣化,从而导致了有效应力的不断增大;而有效应力驱使不可恢复单元剪切断裂,即不可恢复损伤的不断发展,并导致了宏观不可恢复应变的发展(图2)。
图2 混凝土束-链模型
Fig. 2 Fiber bundle-irreversible chain model of concrete
2)模型的统计力学求解
显然,上述束-链模型事实上是一类两尺度物理模型:微观层次的随机断裂和细观层次的应力-应变关系。故基于此物理模型,本文主要关注两个尺度上的随机来源与表征[63―64]:微观单元和细观束-链模型的随机来源与表征。
a) 个体中微观单元的随机性表征
通过不可恢复链模型来模拟有效应力驱动的不可恢复应变行为,于是,定义束-链模型个体在总应变空间下的弹性损伤变量,不可恢复(变形)损伤变量与(总)损伤变量[63―64],并且得到了考虑弹性损伤与不可恢复损伤耦合的束-链模型个体的损伤变量演化方程[63―64]。该损伤变量演化方程中的损伤变量 D(ε)与文献中的纯弹性损伤变量 DE(ε)[36,38,54]是不一样的,因为其合理地考虑了弹性损伤与不可恢复损伤之间的耦合作用(图3)[63―64]。
图3 束-链模型离散/连续体系的应力-应变响应
Fig. 3 Stress-strain responses of the discrete and continuum element system in the BCM
b) 母体中细观个体的随机性表征
考虑到束-链模型母体中所有个体的随机损伤特性,即细观个体的随机性,于是,可得到母体的损伤变量 D(ε)与不可恢复损伤变量 Di(ε)的随机场特征(图4)[63―64]。
图4 不同束-链模型个体的损伤演化及其母体随机场的概率密度函数示意图
Fig. 4 Damage evolution of individuals and probability density of population random field
2.2.2 随机损伤本构模型
由于损伤演化反映的是材料内部由微观断裂阈值决定的微观结构变化过程,即微裂缝产生、发展与汇聚的过程,实际上是材料自身的性质,与应力状态无关[65],故本文认为单轴荷载下由微观断裂阈值决定的损伤演化基本规律仍适用于多轴荷载情况[63―64]。于是,推广单轴随机本构方程,得到张量形式的本构关系:
而不可恢复应变张量为:
其中:I为四阶单位张量;D与Di分别为损伤变量与不可恢复损伤变量张量;ε与εi分别为总应变与不可恢复应变张量;E0为初始弹性模量张量。
考虑拉压损伤的差异性[13-14,66]与各向异性损伤发展,于是,采用受拉与受压情况符号“±”与主轴编号“j”(j = 1, 2, 3),上述本构方程中随机损伤变量D具体表达为[63―64]:
其中:H(x)为Heaviside函数,当x > 0时,其取值为1,否则为0。
式(1)中的损伤变量D为随机变量。于是,这表明:确定性损伤本构关系与随机损伤本构关系反映的是同一个物理规律,唯一的区别在于损伤变量是取确定性变量还是随机变量[65]。
同时考虑到混凝土的多轴受压效应[14,66],引入多轴受压效应系数αj。以双轴应力状态为例,由上述本构关系,主应力方向的随机损伤本构关系表示为[63―64]:
其中:τ12为剪应力;ν为泊松比; γ12为剪应变;jα代表考虑多轴受压效应的系数,其取值详见文献[61,63]。
通过所提出的本构模型得到了单调荷载作用下混凝土随机力学行为的预测结果(图5)[64],并将之与试验结果进行对比。对比结果表明:主要试验点落在应力均值加、减一倍标准差的范围之内。这正是随机损伤本构模型的优势所在[65]:不仅可以在均值意义上反映混凝土应力-应变关系,也可以在概率意义上预测其离散范围,从而更为全面地反映了混凝土材料力学行为的非线性与随机性。
并且,通过上述理论分析与试验验证,可知,混凝土束-链模型,揭示了混凝土力学行为随机性与非线性耦合的物理本质[63]:随机弹性(纤维)断裂与随机不可恢复变形(不可恢复单元)断裂共同导致了混凝土非线性力学行为;二者的耦合关系为前者导致有效应力增大,从而驱动后者发展,而后者进一步促进了前者的发展;这一耦合关系通过束-链模型得到了有效的表征;并且混凝土应力-应变关系的随机性,通过束-链模型母体中个体性能的随机性来表征。
图5 混凝土随机力学行为
Fig. 5 Stochastic mechanical behaviors of concrete under uniaxial loading
1)测定混凝土损伤CT方法研究的不足
作为一种方便的基于物理参数测定损伤变量的方法[67―71],X-射线 CT 方法具有许多优势[67,72―81],例如其能够无损伤地获取测试对象内部损伤的横截面图像。但遗憾的是,当把CT方法测定的损伤变量直接用于损伤本构模型时[82],目前文献中大部分基于 CT 方法的应力-应变响应预测值[74―76,78―79]与试验结果相比差别较大。因此,这些 CT方法[74―76,78―79]在力学行为表征方面的应用受到了很大限制。
本课题组发展了一个用于预测受压混凝土静力本构行为的CT损伤测定方法。为简便,混凝土试件和加载端之间的摩擦暂不考虑。
2)采用CT方法并考虑宏观裂缝的受压混凝土损伤测定
基于混凝土微观损伤机理分析[62―63],采用CT方法测定受压混凝土的损伤,通常涉及由于局部应力所导致的复杂微裂缝扩展行为。尤其是,微裂缝会逐渐发展并汇聚,从而导致宏观裂缝的萌发与扩展,进而导致材料的破坏。因此,所发展的CT方法同时考虑了微观与宏观裂缝行为[62―63]。具体而言,针对微观裂缝行为,需要考虑多轴受压混凝土的微裂缝产生与扩展方向及其对宏观力学行为的影响;而针对宏观裂缝行为,需要考虑由于裂缝发展的局部化,宏观主裂缝对材料损伤破坏的主导作用(图6)[62―63]。
3)验证与讨论
文献[74]报道了利用 CT方法测定受压混凝土损伤变量的一系列试验结果(图7),本文采用其中一组典型试验来验证所发展的CT方法。将该方法测定的损伤变量值直接地、没有经验修正地代入所发展的损伤本构模型,可以得到受压混凝土的应力-应变响应(图8)[62―63]。图8表明,预测值与试验结果吻合较好。
和经典CT方法[74]与经典B-OC方法[83]相比,所发展方法预测的应力-应变响应精度更高(图8)。
图6 单轴压缩荷载下混凝土微观裂缝与双轴压缩荷载下混凝土宏观裂缝示意图
Fig. 6 Sketch of microcracks and macrocracks of concrete in uniaxial and biaxial compression, respectively
图7 单轴压缩荷载下混凝土CT试验过程[74]
Fig. 7 CT experimental procedure of concrete under uniaxial compressive loading[74]
图8 应力-应变响应预测值与试验结果比较
Fig. 8 Comparison of stress-strain responses among experimental results and results by using methods in literature and the proposed method
本文首先从混凝土微观损伤机理与基于纤维束模型的随机损伤本构模型两方面,综述了混凝土随机损伤本构模型研究现状,进而,从考虑mode-II微裂缝的微观损伤机理分析、基于统计力学与束-链模型的随机损伤本构模型和测定受压混凝土损伤变量的CT方法3方面,介绍了本课题组近年来在相关领域取得的主要研究新进展。主要结论如下:
(1)混凝土随机损伤本构模型,在混凝土微观损伤机理分析、微观统计力学和纤维束-不可恢复(应变)链模型的基础上,揭示了混凝土力学行为随机性与非线性耦合的物理本质。并且通过试验验证表明,其不仅可以在均值意义上反映混凝土力学行为,也可以在概率意义上预测其离散范围,从而,更为全面地反映了混凝土力学行为的非线性与随机性。
(2)通过试验验证表明,测定受压混凝土损伤变量的X-射线CT方法改进了已有CT方法,并且提高了预测精度。
(3)深入认识混凝土的微观损伤行为及其机理,并利用简便有效的微观统计力学方法建立随机损伤本构模型,成为今后值得关注的一个研究方向。
参考文献:
[1]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth. Part I: Yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99: 2―15.
[2]Tvergaard V, Needleman A. Analysis of cup-cone fracture in a round tensile bar [J]. ACTA Metallurgica,1984, 32: 57―169.
[3]Zhan S, Wang T C, Han X. A micromechanical damage theory for brittle materials with small cracks [J]. Fatigue& Fracture of Engineering Materials & Structures,1998, 21: 1337―1349.
[4]Caballero A, Carol I, Lopez C M. A meso-level approach to the 3D numerical analysis of cracking and fracture of concrete materials [J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29: 979―991.
[5]Aliha M M, Ayatollahi M R. Brittle fracture evaluation of a fine grain cement mortar in combined tensile-shear deformation [J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32: 987―994.
[6]Kim S M, Abu AL-RUB R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites [J]. Cement and Concrete Research, 2011, 41: 339―358.
[7]Trivedi N, Singh R K, Chattopadhyay J. Size independent fracture energy evaluation for plain cement concrete [J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38: 789―798.
[8]Kosteski L E, Riera J D, Iturrioz I, et al. Assessment of empirical formulas for prediction of the effects of projectile impact on concrete structures [J]. Fatigue &Fracture of Engineering Materials & Structures, 2015,38: 948―959.
[9]Yan Y, Ren Q, Xia N, et al. Artificial neural network approach to predict the fracture parameters of the size effect model for concrete [J]. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38(11):1347―1358.
[10]Katcoff, Z C, Graham-Brady G, et al. Modeling dynamic brittle behavior of materials with circular flaws or pores [J]. International Journal of Solids and Structures, 2014, 51: 754―766.
[11]Nguyen D G. A thermodynamic approach to constitution modeling of concrete using damage mechanics and plasticity theory [D]. Oxford: University of Oxford, 2005.
[12]Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures [J]. Journal of Engineering Mechanics, 1998, 124(8): 892―900.
[13]Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures[J]. International Journal of Solids and Structures, 1998,35(14): 1533―1558.
[14]Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete [J]. International Journal of Solids and Structures, 2006, 43(3/4): 583―612.
[15]Grassl P, Jirasek M. Damage-plastic model for concrete failure [J]. International Journal of Solids and Structures, 2006, 43: 7166―7196.
[16]Grassl P, Xenos D, Nyström U, et al. CDPM2: A damage-plasticity approach to modelling the failure of concrete [J]. International Journal of Solids and Structures, 2013, 50: 3805―3816.
[17]Slate F O, Olsefski S. X-Rays for study of internal structure and microcracking of concrete [J]. Journal of the American Concrete Institute, 1963, 60(5): 575―588.
[18]ABU AL-Rub R K, Voyiadjis G Z. On the coupling of anisotropic damage and plasticity models for ductile Materials [J]. International Journal of Solids and Structures, 2003, 40: 2611―2643.
[19]Paskin A, Massoumzadeh B, Shukla K, et al. Effect of atomic crack tip geometry on local stresses [J]. ACTA Metall, 1985, 33(11): 1987―1996.
[20]Dienes J G, Paskin A. Molecular dynamic simulations of crack propagation [J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1015―1033.
[21]Gumbsch P. An atomistic study of brittle fracture:toward explicit failure criteria from atomistic modeling[J]. J. Mater. Res., 1995, 10(11): 2897―2907.
[22]Gumbsch P, Beltz G E. On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in Nickel [J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5): 597―613.
[23]Zhou Z L, Gu J L, Chen N P, et al. Comparison of finite element calculation and experimental study of elastic-plastic deformation at crack tip [J]. ACTA Mechnica Sinica, 1995, 27: 51―57.
[24]Fischer L L, Beltz G E. The effect of crack blunting on the competition between dislocation nucleation and Cleavage [J]. Journal of the Mechanics and Physics of Solids, 2001, 49: 635―654.
[25]Hajlaoui K, Yavari A R, Doisneau B, et al. Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis [J]. Scripta Materialia, 2006, 54: 1829―1834.
[26]Mazars J, Pijaudier-Cabot G. Continuum damage theory: Application to concrete [J]. ASCE Journal of Engineering Mechanics, 1989, 115(2): 345―365.
[27]Hu G, Liu J, Graham-Brady L, et al. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading [J].Journal of the Mechanics and Physics of Solids, 2015,78: 269―297.
[28]Burr A, Hild F, Leckie F A. Micro-mechanics and continuum damage mechanics [J]. Archive of Applied Mechanics, 1995, 65: 437―456.
[29]Halm D, Dragon A. An anisotropic model of damage and frictional sliding for brittle materials [J]. European Journal of Mechanics-A/Solids, 1998, 17(3): 439―460.
[30]Dragon A, Halm D, Desoyer T. Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183: 331―352.
[31]Le J, Bazant Z P, Bazant M Z. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling [J]. Journal of the Mechanics and Physics of Solids, 2011, 59: 1291―21.
[32]Le J L, Bazant Z P. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures:II. Fatigue crack growth, lifetime and scaling [J].Journal of the Mechanics and Physics of Solids, 2011,59: 1322―1337.
[33]Najar J. Brittle residual strain and continuum damage at variable uniaxial loading [J]. International Journal of Damage Mechanics, 1994, 3: 260―276.
[34]Feng X Q, Gross D. Three-dimensional micromechanical model for quasi-brittle solids with residual strains under tension [J]. International Journal of Damage Mechanics, 2000, 9: 79―110.
[35]Peirce F T. Tensile test for cotton yarns—the weakest Link [J]. Journal of the Textile Institute Transactions,1926, 17: 355―370.
[36]Daniels H E. The statistic theory of the strength of bundles of threads: I [J]. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 1945, 183: 405―35.
[37]Li J, Ren X D. Stochastic damage model for concrete based on energy equivalent strain [J]. International Journal of Solids and Structures, 2009, 46: 2407―2419.
[38]Krajcinovic D, Rinaldi A. Thermodynamics and statistical physics of damage processes in quasiductile solids [J]. Mechanics of Materials, 2005, 37: 299―315.
[39]Kandarpa S, Kirkner D J, Spencer B F. Stochastic damage model for brittle material subjected to monotonic loading [J]. Journal of Engineering Mechanics, 1996, 126: 788―95.
[40]Krajcinovic D. Damage mechanics [M]. 2nd ed.Amsterdam: Elsevier, 1996.
[41]Phoenix S L, smith R L. A comparison of probabilistic techniques for the strength of fibrous materials under local load-sharing among fibers [J]. International Journal of Solids and Structures, 1983, 19: 479―496.
[42]Krajcinovic D, Silva M G. Statistical aspects of the continuous damage theory [J]. International Journal of Solids and Structures, 1982, 18: 551―562.
[43]Harlow D G, Phoenix S L. The chain-of-bundles probability model for the strength of fibrous materials:I. Analysis and conjectures [J]. Journal of Composite Materials, 1978: 195―214.
[44]Coleman B D. Time dependence of mechanical breakdown in bundles of fibers: I. Constant total load[J]. Journal of Applied Physics, 1957, 28: 1058―1064.
[45]Mishnaevsky L, Brøndsted P. Micromechanical modeling of damage and fracture of unidirectional fiber Reinforced composites: a review [J]. Computational Materials Science, 2009, 44: 1351―1359.
[46]Hidalgo R C, Zapperi S, Herrmann H J. Discrete fracture model with anisotropic load sharing [J]. Journal of Statistical Mechanics: Theory and Experiment,2008(1): P01004.
[47]Pradhan S, Bhattacharyya P, Chakrabarti B K. Dynamic critical behavior of failure and plastic deformation in the random fiber bundle model [J]. Physical Review E,2002, 66: 1―12.
[48]Hidalgo R C, Kun F, Herrmann H J. Fracture model with variable range of interaction[J]. Physical Review E, 2002, 65: 046148.
[49]Hidalgo R C, Kun F, Herrmann H J. Bursts in a fiber bundle model with continuous damage [J]. Physical Review E, 2001, 64: 066122.
[50]Sornette D. Critical phenomena in natural sciences [M].Berlin: Springer, 2000.
[51]Kun F, Zapperi S, Herrmann H J. Damage in fiber bundle models [J]. The European Physical Journal B,2000, 17: 269―279.
[52]Hemmer P C, Hansen A. The distribution of simultaneous fiber failures in fiber bundles [J]. Journal of Applied Mechanics, 1992, 59: 909―914.
[53]Newman W I, Gabrielov A M. Failure of hierarchical distributions of fibre bundles: I [J]. International Journal of Fracture, 1991, 50: 1―14.
[54]Pradhan S, Hansen A, Chakrabarti B K. Failure processes in elastic fiber bundles [J]. Reviews of Modern Physics, 2010, 82: 499―555.
[55]Raischel F, Kun F, Herrmann H J. Failure process of a bundle of plastic fibers [J]. Physical Review E, 2006,73: 066101.
[56]Kun F, Raischel F, Hidalgo R C, et al. Extensions of fiber bundle models, modelling critical and catastrophic phenomena in Geo-Science: a statistical approach(lecture notes in physics) [M]. Berlin: Springer, 2006:57―92.
[57]Kun F, Raischel F, Hidalgo R C, et al. Extension of fiber bundle models for creep rupture and interface failure [J]. International Journal of Fracture, 2013, 140(1): 255―265.
[58]Chen J Y, Bai W F, Fan S L, et al. Statistical damage model for quasi-brittle materials under uniaxial tension[J]. Journal of Central South University, 2009, 16:669―676.
[59]Ren X D, Li J. Hysteretic deteriorating model for quasi-brittle materials based on micromechanical damage approach [J]. International Journal of Non-Linear Mechanics, 2011, 46(1): 321―329.
[60]Vincent M, Guy B. A Gurson-type model accounting for VOID size effects [J]. International Journal of Solids and Structures, 2013, 50: 320―327.
[61]Yu Z, Shan Z, Ouyang Z, et al. A simple damage model for concrete considering irreversible mode-II microcracks [J]. Fatigue Fract Engng Mater Struct,2016, 39: 1419―1432.
[62]Yu Z W, Tan S, Shan Z, et al. X-ray computed tomography quantification of damage in concrete under compression considering irreversible mode-II microcracks [J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(12): 1960―1972.
[63]单智. 混凝土随机损伤本构模型及其应用[D].长沙:中南大学,2017.Shan Zhi. Stochastic damage model of concrete and its application [D].Changsha: Central South University,2017. (in Chinese)
[64]Shan Z, Yu Z W. A fiber bundle-plastic chain model for quasi-brittle materials under uniaxial loading [J].Journal of Statistical Mechanics: Theory and Experiment, 2015 (11): P11010.
[65]李杰, 吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京: 科学出版社, 2014: 95―98.Li Jie, Wu Jianying, Chen Jianbing. Stochastic damage mechanics of concrete structures [M]. Beijing: Science Press, 2014: 95―98. (in Chinese)
[66]Li J, Ren X. Stochastic damage model for concrete based on energy equivalent strain[J]. International Journal of Solids and Structures, 2009, 46(11/12):2407―2419.
[67]Buyukozturk O. Imaging of concrete structures [J].Ndt&E International, 1998, 31(4): 233―243.
[68]Wang H, Sun X. Quantification of compressioninduced damage and its effect on the chloride transport in structural concrete [C]. International Conference on Performance-based and Life-cycle Structural Engineering, 2015: 911―919.
[69]Song H, Zhang H, Fu D, et al. Experimental study on damage evolution of rock under uniform and concentrated loading conditions using digital image correlation [J]. Fatigue Fract Engng Mater Struct, 2013,36: 760―768.
[70]Bayraktar E, Isac N, Bessri K, et al. Damage mechanisms in natural (NR) and synthetic rubber(SBR): nucleation, growth and instability of the cavitation [J]. Fatigue Fract Engng Mater Struct, 2008,31: 184―196.
[71]Guvenilir, STOCK. High resolution computed tomography and implication for fatigue crack closure modeling [J]. Fatigue Fract Engng Mater Struct, 1998,21: 439―450.
[72]Wang L B, Frost J D, Voyiadjis G Z, et al.Quantification of damage parameters using X-ray tomography images [J]. Mechanics of Materials, 2003,35: 777―790.
[73]Wan K, Xue X. In situ compressive damage of cement paste characterized by Lab source X-ray computer tomography [J]. Materials Characterization, 2013, 82:32―40.
[74]田威. 混凝土损伤演化的CT研究及其在细观数值模拟中的应用[D]. 西安: 西安理工大学, 2009.Tian Wei. CT study on the concrete-damage evolution and its application in numerical stimulation [D]. Xi’an:Xi’an University of Technology, 2009. (in Chinese)
[75]Ge X, Ren J, Pu Y, et al. Real-in time CT test of the rock meso-damage propagation law [J]. Science in China (Series E), 2001, 44(3): 328―336.
[76]党发宁, 尹小涛, 丁卫华, 等. 基于CT试验的岩体分区破损本构模型[J]. 岩石力学与工程学报, 2005,24(22): 4003―4009.Dang Faning, Yin Xiaotao, Ding Weihua, et al. Subarea breakage constitutive model of rock mass based on CT test [J]. Chinese Journal of Rock Mechanics and Engineering, 24(22): 4003―4009. (in Chinese)
[77]陈四利, 宁宝宽, 鲍文博, 等. 水泥土细观破裂过程的损伤本构模型[J]. 岩土力学, 2007, 28(1): 93―96.Chen Siliang, Ning Baokuan, Bao Wenbo. et al. A damage constitutive model of cemented soil on meso-fracture process testing [J]. Rock and Soil Mechanics, 2007, 28(1): 93―96. (in Chinese)
[78]张全胜, 杨更社, 任建喜. 岩石损伤变量及本构方程的新探讨[J]. 岩石力学与工程学报, 2003, 22(1): 30―34.Zhang Quanshen, Yang Gengshe, Ren Jianxi. New study of damage variable and constitutive equation of rock. Chin [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1): 30―34. (in Chinese)
[79]杨更社, 谢定义, 张长庆. 岩石损伤CT数分布规律的定量分析[J]. 岩石力学与工程学报, 1998, 17(3):279―285.Yang Gengshe, Xie Dingyi, Zhang Changqing. The quantitative analysis of distribution regulation of CT values of rock damage [J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(3): 279―285. (in Chinese)
[80]Ma T, Yang C, Chen P, et al. On the damage constitutive model for hydrated shale using CT scanning technology [J]. Journal of Natural Gas Science and Engineering, 2016, 28: 204―214.
[81]Eberhardt E, Stead D, Stimpson B. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3):361―380.
[82]Lemaitre J, Lippmann H. A course on damage mechanics [M]. Berlin: Springer, 1996.
[83]Budiansky B, O’connell R J. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures, 1976, 12(2): 81―97.
ADVANCES IN RESEARCHES ON STOCHASTIC DAMAGE MODELS OF CONCRETE
YU Zhi-wu1,2, SHAN Zhi1,2
(1. School of Civil Engineering, Central South University, 68 South Shaoshan Road, Changsha, Hunan 410004, China;2. National Engineering Laboratory for High-Speed Railway Construction, Central South University, Changsha, Hunan 410004, China)
Abstract:The studies on the micro damage mechanism and stochastic damage model are reviewed.Furthermore, the advances in researches on the stochastic damage model of concrete by the team of authors are introduced as well. The micro damage mechanism analysis was obtained by taking into account mode-II microcracks, the stochastic damage model (the fiber bundle-irreversible chain model) was proposed and verified by experiments, and an X-ray computed tomography method for the damage quantification of concrete under compression was developed. Additionally, some related conclusions are drawn.
Key words:concrete; constitutive relationship model; stochastic; damage; fiber bundle-irreversible chain model
中图分类号:039; TU528.01
文献标志码:A
DOI:10.6052/j.issn.1000-4750.2017.05.ST13
文章编号:1000-4750(2018)08-0001-08
收稿日期:2017-05-24;修改日期:2018-04-22
通信作者:单 智(1987―),男,湖南衡东人,讲师,博士,从事混凝土随机损伤本构模型、混凝土结构疲劳耐久性、混凝土结构施工技术研究(E-mail: zhishan@csu.edu.cn)
作者简介:余志武(1955―),男,湖南临湘人,教授,博士,博导,从事钢-混凝土组合结构、混凝土结构设计理论、高速和重载铁路桥梁结构动力学计算理论和性能强化技术研究(E-mail: zhwyu@csu.edu.cn).
注:该文在第26届结构工程学术会议(2017 长沙)应邀作特邀报告