Engineering Mechanics ›› 2009, Vol. 26 ›› Issue (增刊 I): 193-197.

• 其他工程学科 • Previous Articles     Next Articles

THE EXTREME WIND SPEED PREDICTING MODEL OF TYPHOON BY USING MONTE-CARLO METHOD

*CHEN Zhao-hui1 , TANG Hai-tao2   

  1. (1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Chongqing Architectural Design Institute, Chongqing 400015, China)
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-06-25 Published:2009-06-25

Abstract: Taking Xiamen as an example, based on the assumption of Batts wind field model and numerical simulated wind speed data of typhoon by using Monte-Carlo method, the distribution functions of extreme wind speed were analyzed and the maximum wind speeds in different return periods were predicted. The numerically simulated results of the extreme distribution functions are coincide with those of empirical distribution function. Compared with the analysis results of different extreme distribution functions, such as Gumbel distribution function, Fréchet distribution function, reverse Weibull distribution function, and Generalized Parato distribution function, the reverse Weibull distribution function provides the most reasonable prediction of maximum wind speed in 100 years of return period, while the predicting values of Fréchet distribution function are significantly different from the historical data. In addition, the extreme wind speeds of different return periods in Xiamen were estimated.

Key words: extreme value theory, wind speed, Monte-Carlo method, numerical simulation, typhoons, reverse Weibull distribution function

CLC Number: 

  • TU311.3
[1] TANG Qiong, LI Yi, LU Xin-zheng, YAN Wei-ming. Study on axial compression capacity of multi-spiral hoops confined concrete columns [J]. Engineering Mechanics, 2018, 35(S1): 166-171.
[2] ZHAI Jin-jin, DONG Sheng. Simulation of ALEUTIAN tsunami by NEOWAVES model [J]. Engineering Mechanics, 2018, 35(S1): 359-364.
[3] ZHU Ming-qiao, ZHANG Zi-wei, JIANG Qiao, SHI Wei-hua. Experimental analysis on the force transmission path of a double-deck traffic concrete box girder [J]. Engineering Mechanics, 2018, 35(S1): 181-187.
[4] QIAN Lan-ping, LI Yi, LU Xin-zheng, YAN Wei-ming. Numerical investigation on residual bearing capacity of columns after collision of light weight vehicle [J]. Engineering Mechanics, 2018, 35(S1): 313-319.
[5] LUO Ying, HUANG Guo-qing, CHEN Bao-zhen, LIU Wei-zhan, LI Ming-shui, LIAO Hai-li. DESIGN WIND SPEED ESTIMATION FOR PULI BRIDGE BASED ON SHORT-TERM MEASURED DATA [J]. Engineering Mechanics, 2018, 35(7): 74-82.
[6] LU Nai-wei, LIU Yang, NOORI Mohammad. EXTRAPOLATION OF TIME-VARIANT EXTREME EFFECT ON LONG-SPAN BRIDGE CONSIDERING STEADILY GROWING TRAFFIC VOLUME [J]. Engineering Mechanics, 2018, 35(7): 159-166.
[7] LI Xiao, FANG Qin, KONG Xiang-zhen, WU Hao. SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL [J]. Engineering Mechanics, 2018, 35(7): 187-193.
[8] SHI Chu, LUO Yu, HU Zhi-qiang. NON-LINEAR BURGERS' SEA-ICE MODEL CONGSIDERING DAMAGE EFFECTS AND ITS NUMERICAL APPLICATION [J]. Engineering Mechanics, 2018, 35(7): 249-256.
[9] LIU Ming-ming, LI Hong-nan, FU Xing. EXPERIMENTAL AND NUMERICAL ANALYSIS OF AN INNOVATIVE RE-CENTERING SHAPE MEMORY ALLOYS-SHEARING LEAD DAMPER [J]. Engineering Mechanics, 2018, 35(6): 52-57,67.
[10] PAN Xiao-jun, ZHANG Yan-ping, CHEN Xi, GAO Wei, FAN Jian. MATHEMATICAL MODEL AND NUMERICAL SIMULATION OF THIN FILM FLOW ON HORIZONTAL SUBSTRATE [J]. Engineering Mechanics, 2018, 35(6): 24-32,41.
[11] LI Shang-bin, LIN Yong-feng, FAN Feng. THE RESEARCH OF AERODYNAMIC CHARACTERISTICS OF TILT ROTOR USING WIND TUNNEL TEST AND NUMERICAL SIMULATION METHODS [J]. Engineering Mechanics, 2018, 35(6): 249-256.
[12] YAO Bo, QUAN Yong, GU Ming, NIE Ming. STUDY ON THE ANALYSIS METHOD OF EXTREME WIND SPEED IN MIXED CLIMATE AREAS [J]. Engineering Mechanics, 2018, 35(5): 86-92.
[13] TIAN Tian, LEI Yang, QI Fa-lin, LI Guo-qing. VIBRATION RESPONSE TRANSMISSION OF LINING ARCH DUE TO TRAIN SPEED-CHANGING VIBRATION LOAD [J]. Engineering Mechanics, 2018, 35(5): 143-151.
[14] HAN Yan, LI Kai, CHEN Hao, CAI Chun-sheng, DONG Guo-chao. NUMERICAL SIMULATION ON AERODYNAMIC CHARACTERISTICS OF TYPICAL VEHICLES ON BRIDGES AND THE WINDSHIELD EFFECTS BETWEEN VEHICLES [J]. Engineering Mechanics, 2018, 35(4): 124-134,185.
[15] SHA Ben, WANG Hao, TAO Tian-you, WU Yi-feng, LI Ai-qun. ANALYSIS ON POUNDING RESPONSE OF ISOLATED CONTINUOUS GIRDER BRIDGE CONSIDERING CONCRETE DAMAGE [J]. Engineering Mechanics, 2018, 35(3): 193-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Yuan;;XU Ying-qiang;LU Guo-zhi;ZHU Xian-fei. NUMERICAL METHOD FOR RESIDUAL STRESS OF GEAR IN SHAKEDOWN[J]. Engineering Mechanics, 2008, 25(10): 0 -211, .
[2] XING De-jin;LI Zhong-xian. FUZZY CONTROL OF STRUCTURES USING SMA SMART DAMPER[J]. Engineering Mechanics, 2008, 25(10): 0 -228, .
[3] ZHOU Xiao-ping;YANG Hai-qing;ZHANG Yong-xing. ELASTOPLASTIC ANALYSIS OF A FINITE PLATE WITH AN ECCENTRIC CRACK LOADED BY TWO PAIRS OF CONCENTRATED TENSILE FORCES[J]. Engineering Mechanics, 2008, 25(1): 0 -027 .
[4] GONG Yao-qing;BAO Shi-hua. A NEW METHOD FOR FREE VIBRATION ANALYSIS OF SPACE MEGA FRAME OF SUPER TALL BUILDINGS[J]. Engineering Mechanics, 2008, 25(10): 0 -140 .
[5] LIU Jin-xing;DENG Shou-chun;ZHANG Jing;LIANG Nai-gang. BEAM LATTICE MODELING FOR THE FRACTURE OF PARTICLE COMPOSITES[J]. Engineering Mechanics, 2008, 25(10): 0 -037 .
[6] LANG Feng-chao;XING Yong-ming;ZHU Jing. THE MECHANICAL PROPERTIES OF 316L STAINLESS STEEL AFTER SURFACE NANOSTRUCTURE TREATMENT USING NANOINDENTATION[J]. Engineering Mechanics, 2008, 25(10): 0 -071 .
[7] GUO Xiao-gang;;LIU Ren-huai;ZENG Na;JIN Xing. THE MODIFICATION ON SPACE CONFIGURATION OF FLEXIBLE PIPE BY THE SUB-STRUCTURE DISPLACEMENT ITERATION METHOD[J]. Engineering Mechanics, 2008, 25(10): 0 -032 .
[8] XING Jing-zhong;LIU Chun-tu. BUCKLING ANALYSIS OF SPANNING PIPE BURIED IN LINEAR ELASTIC SOIL[J]. Engineering Mechanics, 2008, 25(10): 0 -075 .
[9] LIU Xiang-qing;LIU Jing-bo. TIME HISTORY ANALYSIS OF ELASTO-PLASTIC SEISMIC RESPONSE OF A SUBWAY STATION STRUCTURE WITH ARCHED CROSS SECTION BASED ON FIBER MODEL[J]. Engineering Mechanics, 2008, 25(10): 0 -157 .
[10] HAO Qing-duo;WANG Yan-lei;HOU Ji-lin;OU Jin-ping;. EXPERIMENTAL STUDY ON BOND BEHAVIOR OF GFRP RIBBED REBARS[J]. Engineering Mechanics, 2008, 25(10): 0 -165, .