Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (1): 1-14,43.doi: 10.6052/j.issn.1000-4750.2018.08.ST11

    Next Articles

RESEARCH PROGRESS ON DURABILITY OF STRESSED CONCRETE UNDER ENVIRONMENTAL ACTIONS

LUO Da-ming, NIU Di-tao, SU Li   

  1. 1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Shaanxi, Xi'an, 710055, China;
    2. School of Civil Engineering, Xi'an University of Architecture and Technology, Shaanxi, Xi'an 710055, China
  • Received:2018-08-09 Revised:2018-11-27 Online:2019-01-29 Published:2019-01-10

Abstract: Field concrete structures are often working under the coupling effect of mechanical loads and environmental actions. The loads acting on a structure may cause the change of the physical properties of the concrete, and then influence the durability of a concrete structure. The research results of concrete durability have a certain deviation when neglecting the effect of loading. Recent studies on the durability of stressed concrete under the environmental actions are summarized, and the research results of concrete impermeability, concrete neutralization, ion erosion, and freezing-thawing are emphatically introduced, and the prospect of concrete durability research is put forward.

Key words: concrete durability, load, concrete neutralization, ion erosion, freezing-thawing cycle

CLC Number: 

  • TU528
[1] CECS 220:2007, 混凝土结构耐久性评定标准[S]. 北京:中国建筑工业出版社, 2007. CECS 220:2007, Standard for Durability Assessment of Concrete Structures[S]. Beijing:China Architecture Industry Press, 2007. (in Chinese)
[2] GB/T 50476-2008, 混凝土结构耐久性设计规范[S]. 北京:中国建筑工业出版社, 2009. GB/T 50476-2008, Code for durability design of concrete structures[S]. Beijing:China Architecture Industry Press, 2009. (in Chinese)
[3] 杜修力, 金浏. 含孔隙混凝土复合材料有效力学性能研究[J]. 工程力学, 2012, 29(06):70-77. Du Xiuli, Jin Liu. Research on effective mechanical properties of concrete composite material with pores[J]. Engineering Mechanics, 2012, 29(06):70-77. (in Chinese)
[4] Hoseini M, Bindiganavile V, Banthia N. The effect of mechanical stress on permeability of concrete:A review[J]. Cement and Concrete Composites, 2009, 31(4):213-220.
[5] 刘洪珠, 赵铁军, 曹承伟, 等. 轴压荷载作用对混凝土微裂缝和渗透性影响研究[J]. 混凝土, 2016(3):1-4. Liu Hongzhu, Zhao Tiejun, Cao Chengwei, et al. Research on the micro-crack and permeability of concrete under axial compressive load[J]. Concrete, 2016(3):1-4. (in Chinese)
[6] 李琴琴. 碳化-荷载耦合作用下混凝土微结构的研究[D]. 南京:东南大学, 2012. Li Qinqin. Investigation on microstrucmre of concrete under carbonation and coupling action of load and carbonation[D]. Nanjing:Southeast University, 2012. (in Chinese)
[7] 姜福香, 朱方之, 赵铁军. 动静轴拉荷载损伤对混凝土孔隙率的影响及其自愈合效果研究[J]. 公路交通科技, 2012, 29(1):64-69. Jiang Fuxiang, Zhu Fangzhi, Zhao Tiejun. Influence of static and dynamic uniaxial tensile load induced damage on porosity of concrete and the effect of self-healing[J]. Journal of Highway and Transportation Research and Development, 2012, 29(1):64-69. (in Chinese)
[8] 张平, 王曙光, 韩建德, 等. 静力荷载作用下混凝土抗碳化性能及微观结构演化[J]. 混凝土, 2017(10):45-51. Zhang Ping, Wang Shuguang, Han Jiande, et al. Carbonation resistance and microstructure evolution of concrete under static load test[J]. Concrete, 2017(10):45-51. (in Chinese)
[9] Aldea C M, Shah S P, Karr A. Effect of Cracking on Water and Chloride Permeability of Concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3):181-187.
[10] Aldea C M, Shah S P, Karr A. Permeability of cracked concrete[J]. Materials & Structures, 1999, 32(5):370-376.
[11] Wang K, Jansen D C, Shah S P, et al. Permeability study of cracked concrete[J]. Cement and Concrete Research, 1997, 27(3):381-393.
[12] Lim C C, Gowripalan N, Sirivivatnanon V. Microcracking and chloride permeability of concrete under uniaxial compression[J]. Cement & Concrete Composites, 2000, 22(5):353-360.
[13] Hoseini M, Bindiganavile V, Banthia N. The effect of mechanical stress on permeability of concrete:A review[J]. Cement and Concrete Composites, 2009, 31(4):213-220.
[14] 方永浩, 李志清, 张亦涛. 持续压荷载作用下混凝土的渗透性[J]. 硅酸盐学报, 2005, 33(10):106-111. Fang Yonghao, Li Zhiqing, Zhang Yitao. Permeability of concrete under sustained compressive load[J]. Journal of the Chinese Ceramic Society, 2005, 33(10):106-111. (in Chinese)
[15] Gérard B, Breysse D, Ammouche A, et al. Cracking and permeability of concrete under tension[J]. Materials and Structures, 1996, 29(3):141-151.
[16] Picandet V, Khelidj A, Bastian G. Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete[J]. Cement and Concrete Research, 2001, 31(11):1525-1532.
[17] 王中平, 吴科如, 阮世光. 单轴压缩作用对混凝土气体渗透性的影响[J]. 建筑材料学报, 2001, 4(2):127-131. Wang Zhongping, Wu Keru, Ruan Shiguang. Study of gas permeability of concrete under uniaxial compression[J]. Journal of Building Materials, 2001, 4(2):127-131. (in Chinese)
[18] Papadakis V G. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Material Journal, 1991, 88(4):363-373.
[19] Castel A, François R, Arliguie G. Effect of loading on carbonation penetration in reinforced concrete elements[J]. Cement and Concrete Research, 1999, 29(4):561-565.
[20] 袁承斌, 张德峰, 刘荣桂, 等. 混凝土在不同应力状态下的碳化[J]. 建筑结构, 2004, 34(4):32-34. Yuan Chengbin, Zhang Defeng, Liu Ronggui, et al. Carbonization of concrete under different stress states[J]. Building Structure, 2004, 34(4):32-34. (in Chinese)
[21] 涂永明, 吕志涛. 应力状态下混凝土的碳化试验研究[J]. 东南大学学报(自然科学版), 2003, 33(5):573-576. Tu YongMing, Lv ZhiTao. Experiment and research of presteressed concrete structure in carbonation corrosive environments[J]. Journal of Southeast University (Natural Science Edition), 2003, 33(5):573-576. (in Chinese)
[22] 杨林德, 潘洪科, 祝彦知, 等. 多因素作用下混凝土抗碳化性能的试验研究[J]. 建筑材料学报, 2008, 11(3):345-348. Yang Linde, Pan Hongke, Zhu Yanzhi, et al. Experimental study of concrete's carbonization resistance under combined action of factors[J]. Journal of Building Materials, 2008, 11(3):345-348. (in Chinese)
[23] 金祖权, 孙伟, 张云升, 等. 荷载作用下混凝土的碳化深度[J]. 建筑材料学报, 2005, 8(2):179-183. Jin Zuquan, Sun Wei, Zhang Yunsheng, et al. Study on carbonation of concrete under loading[J]. Journal of Building Materials, 2005, 8(2):179-183. (in Chinese)
[24] 牛荻涛. 混凝土结构耐久性与寿命预测[M]. 北京:科学出版社, 2003. Niu Ditao. Durability and life prediction of concrete structure[M]. Beijing:Science Press, 2003. (in Chinese)
[25] 黄可信, 吴兴祖, 蒋仁敏, 等. 钢筋混凝土结构中钢筋腐蚀与保护[M]. 北京:中国建筑工业出版社, 1983:78-91. Huang Kexin, Wu Xingzu, Jiang Renmin, et al. Corrosion and protection of steel bar in reinforced concrete structure[M]. Beijing:China Architecture Industry Press, 1983:78-91. (in Chinese)
[26] 朱安民. 混凝土碳化与钢筋混凝土耐久性[J]. 混凝土, 1992(6):18-22. Zhu Anming. Carbonization of concrete and durability of reinforced concrete[J]. Concrete, 1992(6):18-22. (in Chinese)
[27] 龚洛书, 柳春圃. 混凝土的耐久性及其防护修补[M]. 北京:中国建筑工业出版社, 1990:23-35. Gong Luoshu, Liu Chupu. Durability and protective repair of concrete[M]. Beijing:China Architecture Industry Press, 1990:23-35. (in Chinese)
[28] 邸小坛, 周燕. 混凝土碳化规律的研究[C]//第四届全国混凝土耐久性学术交流会. 苏州:中国土木工程学会混凝土及预应力混凝土分会, 1996:193-198. Di Xiaotan, ZhouYan. Study on the law of concrete carbonization[C]//Fourth National Symposium on Concrete Durability Academic Symposiums. Suzhou:Concrete and Prestressed Concrete Branch of China Civil Engineering Society, 1996:193-198. (in Chinese)
[29] 李立, 黄士元. 混凝土碳化的预测[J]. 混凝土与水泥制品, 1988(3):5-8. Li Li, Huang Shiyuan. Prediction of carbonization of concrete[J]. China Concrete and Cement Products, 1988(3):5-8. (in Chinese)
[30] 张誉, 蒋利学. 基于碳化机理的混凝土碳化深度实用数学模型[J]. 工业建筑, 1998, 28(1):16-19. Zhang Yu, Jiang Lixue. A practical mathematical model of concrete carbonation depth based on the mechanism[J]. Industrial Construction, 1998, 28(1):16-19. (in Chinese)
[31] 牛荻涛, 董振平. 预测混凝土碳化深度的随机模型[J]. 工业建筑, 1999, 29(9):41-45. Niu Ditao Dong Zhenping Pu Yuxiu. Random model of predicting the carbonated concrete depth[J]. Industrial Construction, 1999, 29(9):41-45. (in Chinese)
[32] Tanaka K, Jeon J H, Nawa T, et al. Effect of fatigue by flexure on pore structure and carbonation of concrete and mortar[J]. Journal of Structural & Construction Engineering, 2000, 65(538):15-19.
[33] 周艳霞, 牛荻涛, 苗元耀, 等. 疲劳损伤混凝土碳化试验研究[J]. 工业建筑, 2016, 46(8):123-126. Zhou Yanxia, Niu Ditao, Miao Yuanyao, et al. An experimental study of carbonation of concrete under flexural fatigue[J]. Industrial Construction, 2016, 46(8):123-126. (in Chinese)
[34] 蒋金洋, 孙伟, 金祖权, 等. 疲劳载荷与碳化耦合作用下结构混凝土寿命预测[J]. 建筑材料学报, 2010, 13(3):304-309. Jiang Jinyang, Sun Wei, Jin Zuquan, et al. Service life prediction of structural concrete under coupled interactions of fatigue loading and carbonation factor[J]. Journal of Building Materials, 2010, 13(3):304-309. (in Chinese)
[35] Jiang C, Gu X, Zhang W, et al. Modeling of carbonation in tensile zone of plain concrete beams damaged by cyclic loading[J]. Construction and Building Materials, 2015, 77:479-488.
[36] 胡晓波. 酸雨侵蚀混凝土的试验模拟分析[J]. 硅酸盐学报, 2008, 36(增刊1):147-152. Hu Xiaobo. Analysis for simulation test on acid rain attacking concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(Suppl1):147-152. (in Chinese)
[37] 谢绍东, 周定, 岳奇贤, 等. 模拟酸雨对混凝土影响的研究[J]. 环境科学, 1995, 16(5):22-26. Xie Shaodong, Zhou Ding, Zhou Qixian, et al. Study on the effect of simulated acid rain on concrete[J]. Environmental Science, 1995, 16(5):22-26. (in Chinese)
[38] 张虎元, 高全全, 董兴玲, 等. 酸雨对混凝土的类碳化作用[J]. 混凝土, 2008(2):12-14. Zhang Huyuan, Gao Quanquan, Dong Xingling, et al. Pseudo-carbonization of concrete by acid rain[J]. Concrete, 2008(2):12-14. (in Chinese)
[39] 刘惠玲, 周定, 谢绍东. 我国西南地区酸雨对混凝土性能影响的研究[J]. 哈尔滨工业大学学报, 1997, 29(6):101-104. Liu Huiling, Zhou Ding, Xie Shaodong. Study on the Influence of Acid Rain on Concrete Performance in Southwest China[J]. Journal of Harbin Institute of Technology, 1997, 29(6):101-104. (in Chinese)
[40] 牛荻涛, 周浩爽, 牛建刚. 承载混凝土酸雨侵蚀中性化试验研究[J]. 硅酸盐通报, 2009, 28(3):411-415. Niu Ditao, Zhou Haoshuang, Niu Jiangang. Investigation of neutralization of concrete under loads by accelerated acid rain test[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(3):411-415. (in Chinese)
[41] 王艳, 牛荻涛, 宋占平. 弯曲荷载与酸雨侵蚀共同作用下钢纤维混凝土的耐久性能[J]. 材料导报, 2014, 28(24):120-124. Wang Yan, Niu Ditao, Song Zhanping. Durability of steel fiber reinforced concrete under combined effect of flexural loading and acid rain erosion[J]. Materials Review, 2014, 28(24):120-124. (in Chinese)
[42] Mehta P K, Monteiro P. Concrete:Structure, Properties and materials[M]. Prentice-Hall, 2013:499.
[43] 余红发, 孙伟. 混凝土氯离子扩散理论模型[J]. 东南大学学报(自然科学版), 2006, 36(增刊2):68-76. Yu Hongfa, Sun wei. Model research on chloride ion diffusion in concretes[J]. Journal of Southeast University (Natural Science Edition), 2006, 36(Suppl2):68-76. (in Chinese)
[44] Collepardi M, Marcialis A, Turriziani R. Penetration of chloride ions into cement pastes and concretes[J]. Journal of the American Ceramic Society, 1972, 55(10):534-535.
[45] Samaha H R, Hover K C. Influence of microcracking on the mass transport properties of concrete[J]. ACI Materials Journal. 1992, 89(4):416-424.
[46] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. 浙江大学学报(工学版), 2014, 48(2):221-227. Jin Weiliang, Wang Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(2):221-227. (in Chinese)
[47] 杜修力, 金浏, 张仁波. 压缩荷载作用下混凝土中氯离子扩散行为细观模拟[J]. 建筑材料学报, 2016, 19(1):65-71. Du Xiuli, Jin Liu, Zhang Renbo, Meso-scale simulation of chloride diffusivity in concrete subjected to compressive stress[J]. Journal of Building Materials, 2016, 19(1):65-71. (in Chinese)
[48] Francois R, Maso J C. Effect of damage in reinforced concrete on carbonation or chloride penetration[J]. Cement & Concrete Research, 1988, 18(6):961-970.
[49] Castel A, Francy O, Francois R, et al. Chloride diffusion in reinforced concrete beam under sustained loading[C]. Farmington Hills:American Concrete Institute, 2001:647-661.
[50] Gowripalan N, Sirivivatnanon V, Lim C C. Chloride diffusivity of concrete cracked in flexure[J]. Cement and Concrete Research, 2000, 30(5):725-730.
[51] 赵尚传, 贡金鑫, 水金锋. 弯曲荷载作用下水位变动区域混凝土中氯离子扩散规律试验[J]. 中国公路学报, 2007, 20(04):76-82. Zhao Shangchuan, Gong Jinxin, Shui Jinfeng. Test of chloride diffusion rules in concrete at tidal zone under flexural load[J]. China Journal of Highway and Transport, 2007, 20(04):76-82. (in Chinese)
[52] 邢锋, 冷发光, 冯乃谦, 等. 长期持续荷载对素混凝土氯离子渗透性的影响[J]. 混凝土, 2004(5):3-8. Xing Feng, Leng Faguang, Feng Naiqian, et al. The influence of long-term sustaining load on the permeability of plain concrete to chloride ion[J]. Concrete, 2004(5):3-8. (in Chinese)
[53] 何世钦, 贡金鑫. 弯曲荷载作用对混凝土中氯离子扩散的影响[J]. 建筑材料学报, 2005, 8(2):134-138. He Shiqin, Gong Jinxin. Influence of flexural loading on permeability of chloride ion in concrete[J]. Journal of Building Materials, 2005, 8(2):134-138. (in Chinese)
[54] 袁承斌, 张德峰, 刘荣桂, 等. 不同应力状态下混凝土抗氯离子侵蚀的研究[J]. 河海大学学报(自然科学版), 2003, 31(1):50-54. Yuan Chengbin, Zhang Defeng, Liu Ronggui, et al. Diffusivity of chloride in concrete in different stress states[J]. Journal of Hohai University (Natural Science Edition), 2003, 31(1):50-54. (in Chinese)
[55] 涂永明, 吕志涛. 应力状态下混凝土结构的盐雾侵蚀试验研究[J]. 工业建筑, 2004, 34(5):1-3, 10. Tu Yongming, Lv Zhitao. The experimental research on prestressed concrete structure under salt fog corrosion environment[J]. Industrial Construction, 2004, 34(5):1-3, 10. (in Chinese)
[56] Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressive loading[J]. コンクリー ト工学年次論文報告集, 1995, 19(4):803-808.
[57] Nakhi A E, Xi Y, Willam K, et al. The effect of fatigue loading on chloride penetration in non-saturated concrete[C]. Barcelona, Spain:ECCOMAS, 2000:1-8.
[58] Gontar W A, Martin J P, Popovics J S. Effects of cyclic loading on chloride permeability of plain concrete[C]. Austin:American Society of Civil Engineering, 2000, 302:95-109.
[59] Tran V M, Stitmannaithum B, Nawa T. Prediction of chloride diffusion coefficient of concrete under flexural cyclic load[J]. Computers & Concrete, 2011, 8(3):343-355.
[60] Wang C, Sun W, Jing J, et al. The Transport Properties of Concrete under the Simultaneous Coupling of Fatigue Load and Environment Factors[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2012, 27(01):181-186.
[61] 苏林王, 蔡健, 刘培鸽, 等. 盐雾环境与交变荷载下混凝土梁的试验研究[J]. 华南理工大学学报(自然科学版), 2017, 45(05):97-104. Su Linwang, Cai Jian, Liu Peige, et al. Experimental investigation into RC beam under the action of alternating load in salt-spray environment[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5):97-104. (in Chinese)
[62] 孙伟, 蒋金洋, 王晶, 等. 弯曲疲劳载荷作用下HPC和HPFRCC抗氯离子扩散性能研究[J]. 中国材料进展, 2009, 28(11):19-25. Sun Wei, Jiang Jinyang, Wang Jing, et al. Resistance to chloride ion diffusion of HPC and HPFRCC under bending fatigue load[J]. Materials China, 2009(11):19-25. (in Chinese)
[63] 蒋金洋, 孙伟, 王晶, 等. 弯曲疲劳载荷作用下结构混凝土抗氯离子扩散性能[J]. 东南大学学报(自然科学版), 2010, 40(2):362-366. Jiang Jinyang, Sun Wei, Wang Jing, et al. Resistance to chloride ion diffusion of structural concrete under bending fatigue load[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(2):362-366. (in Chinese)
[64] 牛荻涛, 陆炫毅, 苗元耀, 等. 盐雾环境下疲劳损伤混凝土氯离子扩散性能[J]. 西安建筑科技大学学报(自然科学版), 2015, 47(5):617-620. Niu Ditao, Lu Xuanyi, Miao Yuanyao, et al. Diffusion of chloride ions into fatigue-damaged concrete in salt spray environment Journal of Xi'an university of architecture & technology (Natural Science Edition), 2015, 47(5):617-620. (in Chinese)
[65] 冯乃谦, 邢锋, 刘崇熙. 混凝土与混凝土结构的耐久性[M]. 北京:机械工业出版社, 2009:248-270. Feng Naiqian, Xing Feng. Durability of concrete and concrete structure[M]. Beijing:Mechanical Industry Press, 2009:248-270. (in Chinese)
[66] 张誉, 蒋利学, 张伟平, 等. 混凝土结构耐久性概论[M]. 上海:上海科学技术出版社, 2003:132-135. Zhang Yu, Jiang Lixue, Zhang Weiping, et al. Durability of concrete structures[M]. Shanghai:Shanghai Scientific & Technical Publishers, 2003:132-135. (in Chinese)
[67] Živica V, Szabo V. The behaviour of cement composite under compression load at sulphate attack[J]. Cement and Concrete Research, 1994, 24(8):1475-1484.
[68] Piasta W G, Schneider U. The behaviour of concrete under Na2SO4 solution attack and sustained compression or bending[J]. Magazine of Concrete Research, 1991, 43(157):281-289.
[69] 薛耀东, 曹怀建, 李清, 等. 不同应力状态下混凝土硫酸盐侵蚀试验研究[J]. 施工技术, 2014, 43(增刊2):299-302. Xue Yaodong, Cao Huaijian, Li Qing, et al. Experiment research on concrete with different prestress corroded by sulfate[J]. Construction Technology, 2014, 43(Suppl2):299-302. (in Chinese)
[70] Yang D, Luo J. The damage of concrete under flexural loading and salt solution[J]. Construction and Building Materials, 2012, 36:129-134.
[71] Gao J, Yu Z, Song L, et al. Durability of concrete exposed to sulfate attack under flexural loading and drying-wetting cycles[J]. Construction and Building Materials, 2013, 39:33-38.
[72] Jin Z, Sun W, Jiang J, et al. Damage of concrete attacked by sulfate and sustained loading[J]. Journal of Southeast University (English Edition), 2008, 24(1):69-73.
[73] 慕儒, 孙伟, 缪昌文. 荷载作用下高强混凝土的硫酸盐侵蚀[J]. 工业建筑, 1999, 29(8):54-57. Mu Ru, Sun Wei, Miao Changwen. Sulphate attack of high strength concrete on the action of pre-loading[J]. Industrial Construction, 1999, 29(8):54-57. (in Chinese)
[74] 李金玉, 林莉, 曹建国, 等. 高浓度和应力状态下混凝土硫酸盐侵蚀性的研究[C]. 大连:中国土木工程学会, 2000:281-290. Li Jinyu, Lin Li, Cao Jianguo, et al. Study on high concentration sulfate attack of stress concrete[C]. Fifth National Symposium on Concrete Durability of Concrete. Dalian:China Civil Engineering Society, 2000:281-290. (in Chinese)
[75] Atkinson A, Hearne J A. Mechanistic model for the durability of concrete barriers exposed to sulfate-bearing groundwaters[C]. Pittsburgh:Materials Research Society, 1990, 176:149-156.
[76] Clifton J R. Predicting the service life of concrete[J]. ACI Materials Journal. 1993, 90(6):611-617.
[77] Schneider U, Chen S W. Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials[J]. Materials & Structures, 1998, 31(10):662-668.
[78] 钟海明. 荷载-干湿循环作用下混凝土抗硫酸盐侵蚀性能研究[D]. 广州:广州大学, 2012. Zhong Haiming. Study on the performance of concrete resistance to sulfate attack under combined cyclic environments and flexural loading[D]. Guangzhou:Guangzhou University, 2012. (in Chinese)
[79] 陈拴发, 郑木莲, 王秉纲. 粉煤灰混凝土应力腐蚀特性试验研究[J]. 中国公路学报, 2005, 18(03):14-17. Chen Shuanfa, Zheng Mulian, Wang Binggang. Experimental research on stress corrosion character of fly-ash-cement concrete[J]. China Journal of Highway and Transport, 2005, 18(03):14-17.
[80] 李培荣. 疲劳荷载与硫酸盐腐蚀耦合作用下道路水泥混凝土劣化研究[J]. 公路, 2016(11):41-46. Li Peirong. Research on the damage of road concrete subjected to the coupling effect of fatigue load and sulfate corrosion[J]. Highway, 2016(11):41-46. (in Chinese)
[81] 关博文, 於德美, 马慧, 等. 疲劳荷载作用下道路混凝土硫酸盐侵蚀及防护[J]. 表面技术, 2016, 45(3):127-133. Guan Bowen, Yu Demei, Ma Hui, et al. Sulfate corrosion and corrosion protection of road concrete under fatigue load[J]. Surface Technology, 2016, 45(3):127-133. (in Chinese)
[82] 陈拴发, 李华平, 李祖仲, 等. 交变荷载对硫酸盐侵蚀混凝土速率影响研究[J]. 武汉理工大学学报, 2011, 33(6):44-49. Chen Shuanfa, Li Huaping, Li Zuzhong, et al. Study on the influence of alternation loading to the speed of sulfate corrosion concretes[J]. Journal of Wuhan University of Technology, 2011, 33(6):44-49. (in Chinese)
[83] 关博文. 交变荷载与硫酸盐腐蚀作用下水泥混凝土疲劳损伤机制[D]. 长安:长安大学, 2012. Guan Bowen. Study on the fatigue damage of cement concrete subjected to sulfate corrosion and alternating stresses[D]. Chang'an:Chang'an University, 2012. (in Chinese)
[84] Power T C. A working hypothesis for further studies of frost resistance of concrete[J]. Journal of ACI, 1945, 16(4):245-272.
[85] Powers T C. The air requirement of frost-resistant concrete[C]. Washington, D. C.:Highway Research Board, 1949:184-211.
[86] Powers T C, Helmuth R A. Theory of volume changes in hardened Portland cement pastes during freezing[C]. Washington, D. C.:Highway Research Board, 1953:285-297.
[87] Collins A R. The destruction of concrete by frost[J]. Journal of the Institution of Civil Engineers, 1944, 23(1):29-41.
[88] Fgaerlund G. Significance of critical degrees of saturation at freezing of porous and brittle materials[C]/. Detroit:American Concrete Institute, 1975:13-65.
[89] Litvan G G. Frost action in cement paste[J]. Matériaux Et Construction, 1973, 6(4):293-298.
[90] Sun W, Zhang Y M, Yan H D, et al. Damage and its restraint of concrete with different strength grades under double damage factors[J]. Cement and Concrete Composites, 1999, 21(5):439-442.
[91] Sun W, Zhang Y M, Yan H D, et al. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J]. Cement and Concrete Research, 1999, 29(9):1519-1523.
[92] 余红发, 孙伟, 李美丹. 荷载对混凝土在腐蚀-冻融作用下强度的影响[J]. 哈尔滨工业大学学报, 2010, 42(2):297-301. Yu Hongfa, Sun Wei, Li Meidan. Effect of flexural stress on strength development of concrete subjected to combined actions of freezing-thawing cycles and chemical attack[J]. Journal of Harbin Institute of Technology, 2010, 42(2):297-301. (in Chinese)
[93] 慕儒. 冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D]. 南京:东南大学, 2000. Mu Ru. Durability and service life prediction of concrete subjected to the combined action of freezing-thawing, sustained external flexural stress and salt solution[D]. Nanjing:Southeast University, 2000. (in Chinese)
[94] 曹银, 王玲, 王振地, 等. 弯拉荷载-冻融循环-氯盐侵蚀作用下混凝土的劣化[J]. 建筑材料学报, 2016, 19(5):821-825. Cao Yin, Wang Ling, Wang Zhendi, et al. Deterioration of concrete caused by freeze-thaw cycles combined with chloride attack under flexural load[J]. Journal of Architectural Structure, 2016, 19(5):821-825. (in Chinese)
[95] 刁波, 孙洋, 马彬. 混合侵蚀和冻融交替作用下持续承载钢筋混凝土梁试验[J]. 建筑结构学报, 2009(增刊2):281-286. Diao Bo, Sun Yang, Ma Bin. Experiment of persistent loading reinforced concrete beams under alternative action sofa mixed aggressive solution and freeze-thaw cycles[J]. Journal of Architectural Structure, 2009(Suppl2):281-286. (in Chinese)
[96] 黄鹏飞, 包亦望, 姚燕. 在盐冻循环、钢锈与弯曲荷载协同作用下钢筋混凝土的损伤失效研究[J]. 工业建筑, 2005, 35(5):63-67. Huang Pengfei, Bao Yiwang, Yao Yan. Damages of reinforced concrete under synergistic effects of cyclic freeze-thaw, deicing-salt attack, rebar corrosion and bending load[J]. Industrial Construction, 2005, 35(5):63-67. (in Chinese)
[97] 黄鹏飞. 钢筋混凝土在环境腐蚀与弯曲荷载协同作用下的损伤失效研究[D]. 北京:中国建筑材料科学研究院, 2004. Huang Pengfei. Study on damage and failure of reinforced concrete under the combined action of environmental corrosion and bending load[D]. Beijing:China Academy of Building Materials Science, 2004. (in Chinese)
[98] 朱江. 预应力混凝土梁在冻融循环后的受力性能研究[D]. 扬州:扬州大学, 2006. Zhu Jiang. Study on mechanical properties of prestressed concrete beams after freeze-thaw cycles[D]. Yangzhou:Yangzhou University, 2006. (in Chinese)
[99] 严安, 李启令, 吴科如. 高性能混凝土在荷载作用下的冻融性能及其可靠性分析[J]. 混凝土与水泥制品, 2000(3):3-6. Yan An, Li Qiling, Wu Keru. Freeze-thaw performance and reliability analysis of high performance concrete under load[J]. China Concerete and Cement Products, 2000(3):3-6. (in Chinese)
[100] Trottier J F, Forgeron D. Cumulative effects of flexural fatigue loading and freezing and thawing cycles on the flexural toughness of fiber reinforced concrete[C]. Canada:Routledge Press, 2001:18-20.
[101] Forgeron D P, Trottier J F. Evaluating the effects of combined freezing and thawing and flexural fatigue loading cycles on the fracture properties of FRC[M]//Brebbia, C A, De Wilde, W P. High Performance Structures and Materials Ⅱ. Southampton:WIT Press, 2004:177-187.
[102] Lappa E S. High strength fiber reinforced concrete static and fatigue behavior in bending[D]. Netherlands:Technique University Delft, 2007.
[103] 李文婷. 疲劳荷载与冻融循环在混凝土损伤劣化过程中的耦合作用规律与机理[D]. 南京:东南大学, 2012. Li Wenting. The coupling law and mechanism of fatigue load and freeze-thaw cycle in damage deterioration of concrete[D]. Nanjing:Southeast University, 2012. (in Chinese)
[104] Hasan M, Okuyama H, Sato Y, et al. Stress-strain model of concrete damaged by freezing and thawing cycles[J]. Journal of Advanced Concrete Technology, 2004, 2(1):89-99.
[105] Hasan M, Ueda T, Sato Y. Stress-strain relationship of frost-damaged concrete subjected to fatigue loading[J]. Journal of Materials in Civil Engineering, 2008, 20(1):37-45.
[106] 刘荣桂, 刘涛, 周伟玲, 等. 受疲劳荷载作用后的预应力混凝土构件冻融循环试验与损伤模型[J]. 南京工业大学学报(自然科学版), 2011, 33(3):22-27. Liu Ronggui, Liu Tao, Zhou Weiling, et al. Freeze-thaw cycle test and damage mechanics model of PC members after fatigue loads[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2011, 33(3):22-27. (in Chinese)
[1] GAO Liang-tian, WANG Jian-wei, WANG Qing, JIA Bin, WANG Yong-kui, SHI Li. NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE [J]. Engineering Mechanics, 2019, 36(1): 227-237.
[2] LI Zheng-bao, CUI Yan-wei, SONG Kun, MA Hua, TANG Zhen-yun. SHEAR CAPACITY CALCULATION METHOD OF PANEL ZONE IN REINFORCED CONCRETE FRAME UNDER BIDIRECTIONAL LOADING [J]. Engineering Mechanics, 2019, 36(1): 175-182.
[3] YANG Lu, WEI Xuan, SHI Gang, XIAO Shi-yong. EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES [J]. Engineering Mechanics, 2019, 36(1): 200-206.
[4] ZHU Ming-qiao, ZHANG Zi-wei, JIANG Qiao, SHI Wei-hua. Experimental analysis on the force transmission path of a double-deck traffic concrete box girder [J]. Engineering Mechanics, 2018, 35(S1): 181-187.
[5] YANG Zhi-jian, LEI Yue-qiang, TAN Ya-wen, LI Guo-chang, WANG Jing-ming. Mechanical performance of improved PHC pile-to-pile cap connection [J]. Engineering Mechanics, 2018, 35(S1): 223-229.
[6] LI Lin-feng, MA Meng, LIU Wei-ning, DU Lin-lin. Analysis for the vibration reduction characteristics of steel spring floating slab tracks under different types of excitation [J]. Engineering Mechanics, 2018, 35(S1): 253-258.
[7] PENG Tian-bo, LI Yi-ming, WU Yi-cheng. Real time hybrid test of seismic performance of laminated nature rubber bearings [J]. Engineering Mechanics, 2018, 35(S1): 300-306.
[8] LUO Wei, XIAO Yun-yi, HE Dong-er, ZHANG Zi-hua. Experimental study on interfacial tensile bonding performance of pre-heated CFRP-concrete under fast load [J]. Engineering Mechanics, 2018, 35(S1): 307-312,324.
[9] ZHU Bai-jie, ZHANG Ling-xin, WANG Tao. Tests on the mechanical behavior of steel shear panel dampers under axial loads [J]. Engineering Mechanics, 2018, 35(S1): 140-144.
[10] CHEN Rong, LEI Jun-qing. Study on the seismic behavior of RC bridge piers under variable axial load [J]. Engineering Mechanics, 2018, 35(S1): 239-245.
[11] HE Qun, CHEN Yi-yi, TIAN Hai. Hysteretic behavior of low yield point steel LYP100 under large inelastic strain [J]. Engineering Mechanics, 2018, 35(S1): 27-33.
[12] YANG Feng-li. Structural analysis on a typical transmission tower body section with bolt slippage effects [J]. Engineering Mechanics, 2018, 35(S1): 193-199.
[13] ZHANG Ai-lin, ZHANG Xun, LIU Xue-chun, WANG Qi. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF STEEL FRAME WITH PREFABRICATED BEAM-ONLY CONNECTED STEEL PLATE SHEAR WALL [J]. Engineering Mechanics, 2018, 35(9): 54-63,72.
[14] WANG Zong-yi, ZHANG Yun-feng, WANG Yuan-qing, DU Xin-xi, YUAN Huan-xin. FINITE ELEMENT ANALYSIS OF FATIGUE CRACK PROPAGATION ON TRAFFIC SINGAL SUPPORT STRUCTURES [J]. Engineering Mechanics, 2018, 35(9): 180-187.
[15] ZHU Chong-ji, DONG Yu-li. AN ENERGY METHOD FOR CALCULATION THE LOAD-CARRYING CAPACITY OF TWO-WAY SLABS WITH TWO EDGES SIMPLY SUPPORTED AND TWO EDGES CLAMPED IN FIRE [J]. Engineering Mechanics, 2018, 35(8): 67-78,99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Tian-e, SUN Xiao-ying, WU Yue, WANG Chang-guo. PARAMETER ANALYSIS OF AERODYNAMIC DRAG FORCE IN STRATOSPHERIC AIRSHIP[J]. Engineering Mechanics, 2019, 36(1): 248 -256 .
[2] GUAN Jun-feng, YAO Xian-hua, BAI Wei-feng, CHEN Ji-hao, FU Jin-Wei. DETERMINATION OF FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING SMALL SPECIMENS[J]. Engineering Mechanics, 2019, 36(1): 70 -79,87 .
[3] GAO Liang-tian, WANG Jian-wei, WANG Qing, JIA Bin, WANG Yong-kui, SHI Li. NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE[J]. Engineering Mechanics, 2019, 36(1): 227 -237 .
[4] GAO Yan-fang, CHEN Mian, LIN Bo-tao, JIN Yan. GENERALIZED EFFECTIVE STRESS LAW FOR MULTI-POROSITY MEDIA UNSATURATED WITH MULTIPHASE FLUIDS[J]. Engineering Mechanics, 2019, 36(1): 32 -43 .
[5] YU Xiao, CHEN Li, FANG Qin. A TESTING METHOD ON THE ATTENUATION OF STRESS WAVES IN LOOSE POROUS MEDIA AND ITS APPLICATION TO CORAL SAND[J]. Engineering Mechanics, 2019, 36(1): 44 -52,69 .
[6] YUAN Si, JIANG Kai-feng, XING Qin-yan. A NEW ADAPTIVE FEM FOR MINIMAL SURFACES FORM-FINDING OF MEMBRANE STRUCTURES[J]. Engineering Mechanics, 2019, 36(1): 15 -22 .
[7] GAO Shan, ZHENG Xiang-yuan, HUANG Yi. HYBRID HERMITE MODELS FOR SHORT TERM EXTREMA ESTIMATION OF NON-GAUSSIAN PROCESSES[J]. Engineering Mechanics, 2019, 36(1): 23 -31 .
[8] BAI Lu-shuai, LI Gang, JIN Yong-qiang, LI Hong-nan. A STRUCTURAL STATE IDENTIFICATION METHOD FOR TRUSS STRUCTURES WITH SEPARATED DAMAGE[J]. Engineering Mechanics, 2019, 36(1): 53 -60 .
[9] CUI Zhao-yan, XU Ming, CHEN Zhong-fan, WANG Fei. EXPERIMENTAL STUDY ON BEARING CAPACITY OF BOLTED STEEL-PSB-STEEL CONNECTIONS[J]. Engineering Mechanics, 2019, 36(1): 96 -103,118 .
[10] JIA Bu-yu, YAN Quan-sheng, YU Xiao-lin, YANG Zheng. STABILITY ANALYSIS ON PEDESTRIAN-INDUCED LATERAL VIBRATION OF FOOTBRIDGES CONSIDERING PEDESTRIAN STOCHASTIC EXCITATION[J]. Engineering Mechanics, 2019, 36(1): 155 -164 .