Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (2): 215-223.doi: 10.6052/j.issn.1000-4750.2017.12.0986

Previous Articles     Next Articles

TESTS ON LOAD-CARRYING BEHAVIOR OF STAINLESS STEEL BOLTED T-STUB CONNECTIONS

YUAN Huan-xin1,2, HU Song1, DU Xin-xi1,2, CHENG Xiao-yan1,2   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan 430072, China;
    2. Key Laboratory of Geotechnical and Structural Engineering Safety of Hubei Province, Wuhan University, Wuhan 430072, China
  • Received:2017-12-27 Revised:2018-07-08 Online:2019-02-22 Published:2019-02-22

Abstract: A total of 14 stainless steel bolted T-stubs were tested under monotonic loading. The ultimate strength, failure modes and prying forces of the test specimens were obtained. The effects of the key parameters including the flange thickness, flange material grade, bolt diameter and bolt preloading were analyzed. It was revealed that the introduction of bolt preloading had little effect on the ultimate strength and failure mode, but resulted in increased initial stiffness for the T-stub specimens. The failure mode of the T-stub connections depended on both the tensile strength of the bolt and the flexural strength of the flange. The prying forces increased gradually with reduced flange thickness and bolt diameters, while the prying forces corresponding to the ultimate strength were not influenced by the bolt preloading. The test results were further compared with the strength predicted by the existing European, American and Chinese design codes. It was found that the existing design provisions were generally conservative for stainless steel bolted T-stub connections, among which the American code provided relatively better predictions. It may be attributed to the use of material tensile strength instead of yield strength.

Key words: stainless steel, T-stub, bolted connections, prying force, monotonic loading test

CLC Number: 

  • TU391
[1] 刘智敏, 崔玲, 孙静. 考虑撬力作用的T形受拉连接设计方法[J]. 北方交通大学学报, 2002, 26(4):12-15. Liu Zhimin, Cui Ling, Sun Jing. Design method for T-shaped tensile connection considering prying action[J]. Journal of Northern Jiaotong University, 2002, 26(4):12-15. (in Chinese)
[2] 郑杰, 王燕. 考虑撬力的高强螺栓T形受拉连接设计现状[J]. 钢结构, 2006, 21(4):15-18. Zheng Jie, Wang Yan. Present situation of design on high strength bolt T-shaped tensile connection considering prying action[J]. Steel Construction, 2006, 21(4):15-18. (in Chinese)
[3] 王萌, 王燕, 柴昶, 等. 欧洲规范EC3高强螺栓等效T形件的有效长度及承载力研究[J]. 建筑钢结构进展, 2009, 11(3):58-62. Wang Meng, Wang Yan, Chai Chang, et al. Effective length of an equivalent T-stub for high-strength bolted connections in EC3 and study on the resistance[J]. Progress in Steel Building Structures, 2009, 11(3):58-62. (in Chinese)
[4] 刘秀丽, 王燕, 李美红, 等. 钢结构T形连接高强度螺栓受力分析及数值模拟[J]. 建筑科学与工程学报, 2016, 33(2):63-70. Liu Xiuli, Wang Yan, Li Meihong, et al. Force analysis and numerical simulation of high strength bolts in T-stub connection of steel structure[J]. Journal of Architecture and Civil Engineering, 2016, 33(2):63-70. (in Chinese)
[5] 暴伟, 周向前, 班敏, 等. 受拉T形连接件高强螺栓受力性能研究[J]. 建筑结构学报, 2016, 37(增刊1):380-387. Bao Wei, Zhou Xiangqian, Ban Min, et al. Research on mechanical property of high-strength bolts in tensioned T-stub connections[J]. Journal of Building Structures, 2016, 37(Suppl 1):380-387. (in Chinese)
[6] Zhao M S, Lee C K, Chiew S P. Tensile behavior of high performance structural steel T-stub joints[J]. Journal of Constructional Steel Research, 2016, 122:316-325.
[7] Piluso V, Faella C, Rizzano G. Ultimate behavior of bolted T-stubs. Ⅱ:Model validation[J]. Journal of Structural Engineering, 2001, 127(6):694-704.
[8] Massimo L, Gianvittorio R, Aldina S, et al. Experimental analysis and mechanical modeling of T-stubs with four bolts per row[J]. Journal of Constructional Steel Research, 2014, 101:158-174.
[9] 赵伟, 童根树. 加劲T形件连接节点试验研究[J]. 浙江大学学报(工学版), 2008, 42(1):66-71. Zhao Wei, Tong Genshu. Test analysis of stiffened T-stub connections[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(1):66-71. (in Chinese)
[10] 吴兆旗, 姜绍飞, 喻露, 等. 设置垫板的T形件螺栓连接滞回性能试验研究[J]. 工程力学, 2014, 31(2):164-169, 176. Wu Zhaoqi, Jiang Shaofei, Yu Lu, et al. Experimental research on the hysteretic behavior of bolted T-stub connection with inserted plates[J]. Engineering Mechanics, 2014, 31(2):164-169, 176. (in Chinese)
[11] Guo H C, Liang G, Li Y L, et al. Q690 high strength steel T-stub tensile behavior:Experimental research and theoretical analysis[J]. Journal of Constructional Steel Research, 2017, 139:473-483.
[12] Liang G, Guo H C, Liu Y H, et al. Q690 high strength steel T-stub behavior:Experimental and numerical analysis[J]. Thin-Walled Structures, 2018, 122:554-571.
[13] 舒赣平, 郑宝锋, 沈晓明. 冷成型不锈钢管轴心受压柱试验研究[J]. 建筑结构学报, 2013, 34(5):87-95. Shu Ganping, Zheng Baofeng, Shen Xiaoming. Experimental study on cold-formed stainless steel tubular columns subjected to axial loading[J]. Journal of Building Structures, 2013, 34(5):87-95. (in Chinese)
[14] 辛连春, 沈晓明, 舒赣平, 等. 不锈钢受弯构件的试验研究[J]. 工业建筑, 2012, 42(5):33-40. Xin Lianchun, Shen Xiaoming, Shu Ganping, et al. Experimental investigations of stainless steel beams[J]. Industrial Construction, 2012, 42(5):33-40. (in Chinese)
[15] 尚帆, 杨璐, 赵梦晗, 等. 不锈钢工字形截面轴心受压构件整体稳定性能有限元研究[J]. 工程力学, 2016, 33(3):112-119. Shang Fan, Yang Lu, Zhao Menghan, et al. FEA of the overall stability for I-section stainless steel member under axial compression[J]. Engineering Mechanics, 2016, 33(3):112-119. (in Chinese)
[16] 袁焕鑫, 王元清, 石永久, 等. 焊接箱形截面不锈钢柱相关稳定性能分析[J]. 工程力学, 2015, 32(9):84-91. Yuan Huanxin, Wang Yuanqing, Shi Yongjiu, et al. Behavior of interactive buckling in welded stainless steel box section columns[J]. Engineering Mechanics, 2015, 32(9):84-91. (in Chinese)
[17] 邹若梦, 董军, 金晓兰. 不锈钢对接焊缝连接试验及设计建议[J]. 建筑结构, 2013, 43(9):83-87. Zou Ruomeng, Dong Jun, Jin Xiaolan. Experimental and design suggestions for stainless steel weld connections[J]. Building Structure, 2013, 43(9):83-87. (in Chinese)
[18] 张有振, 杨璐, 周晖, 等. 双相型不锈钢角焊缝连接承载性能有限元分析[J]. 工程力学, 2017, 34(9):110-118, 157. Zhang Youzhen, Yang Lu, Zhou Hui, et al. Finite element analyses of loading capacity of fillet-weld connections fabricated from duplex stainless steel[J]. Engineering Mechanics, 2017, 34(9):110-118, 157. (in Chinese)
[19] 杨璐, 卫璇, 张有振, 等. 不锈钢母材及其焊缝金属材料单拉本构关系[J]. 工程力学, 2018, 35(5):125-130, 151. Yang Lu, Wei Xuan, Zhang Youzhen, et al. Research on the tensile stress-strain relation of stainless steel base material and its weld metal mate[J], Engineering Mechanics, 2018, 35(5):125-130, 151. (in Chinese)
[20] 段文峰, 赵龙, 刘文渊, 等. 不锈钢螺栓连接节点抗剪性能试验[J]. 沈阳建筑大学学报:自然科学版, 2017, 33(3):410-419. Duan Wenfeng, Zhao Long, Liu Wenyuan, et al. Experimental research on bearing performance of stainless steel bolted joints[J]. Journal of Shenyang Jianzhu University (Natural Science), 2017, 33(3):410-419. (in Chinese)
[21] CECS 410:2015, 不锈钢结构技术规程[S]. 北京:中国计划出版社, 2015. CECS 410:2015, Technical specification for stainless steel structures[S]. Beijing:China Planning Press, 2015. (in Chinese)
[22] GB/T 228.1-2010, 金属材料拉伸试验第1部分:室温试验方法[S]. 北京:中国标准出版社, 2011. GB/T 228.1-2010, Metallic materials-Tensile testing-Part 1:Method of test at room temperature[S]. Beijing:Standards Press of China, 2011. (in Chinese)
[23] EN 1993-1-4:2006+A1:2015, Eurocode 3:Design of steel structures-Part 1.4:General rules-Supplementary rules for stainless steels[S]. Brussels:European Committee for Standardization, 2015.
[24] EN 1993-1-8, Eurocode 3:Design of steel structures -Part 1-8:Design of joints[S]. Brussels:European Committee for Standardization, 2005.
[25] SEI/ASCE 8-02, Specification for the design of cold-formed stainless steel structural members[S]. New York:American Society of Civil Engineers (ASCE), 2002.
[26] AISC, Steel construction manual, 14th ed[S]. Chicago:American Institute of Steel Construction, 2011.
[27] JGJ 82-2011, 钢结构高强度螺栓连接技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 82-2011, Technical specification for high strength bolt connections of steel structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese) (上接第185页)
[13] 姜忻良, 徐炳伟, 李竹. 土-桩-结构振动台模型试验相似理论及其实施[J]. 振动工程学报, 2010, 23(2):225-229. Jiang Xinliang, Xu Bingwei, Li Zhu. Similitude laws and its application in shaking table test of soil-pile-structure interaction system[J]. Journal of Vibration Engineering, 2010, 23(2):225-229. (in Chinese)
[14] Li Y, Jiang X L. Parametric analysis of eccentric structure-soil interaction system based on branch mode decoupling method[J]. Soil Dynamics and Earthquake Engineering, 2013, 48(6):63-70.
[15] 周惠蒙, 吴斌, 王涛, 等. 基于速度的显式等效力控制方法的研究[J]. 工程力学, 2016, 33(6):15-22. Zhou Huimeng, Wu Bin, Wang Tao, et al. Explicit equivalent force control method based on velocity[J]. Engineering Mechanics, 2016, 33(6):15-22. (in Chinese)
[16] 唐贞云, 陈适才, 张金喜, 等. 基于振动台的实时动力子结构实验系统稳定性预测研究[J]. 工程力学, 2016, 33(12):217-224. Tang Zhenyun, Chen Shicai, Zhang Jinxi, et al. Study on the stability prediction of real-time dynamic substructure system based on shaking table[J]. Engineering Mechanics, 2016, 33(12):217-224. (in Chinese)
[17] Tagawa Y, Tu J Y, Stoten D P. Inverse dynamics compensation via ‘simulation of feedback control systems’[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems and Control Engineering, 2010, 225(1):137-153.
[18] Guo J, Tang Z Y, Chen S, et al. Control strategy for the substructuring testing systems to simulate soil-structure interaction[J]. Smart Structures and Systems, 2016, 18(6):1169-1188.
[1] YANG Lu, WEI Xuan, ZHANG You-zhen, CHANG Xiao, JIANG Qing-lin. RESEARCH ON THE TENSILE STRESS-STRAIN RELATION OF STAINLESS STEEL BASE MATERIAL AND ITS WELD METAL MATERIAL [J]. Engineering Mechanics, 2018, 35(5): 125-130,151.
[2] YANG Lu, NING Ke-yang, BAN Hui-yong, ZHAO Meng-han. EXPERIMENTAL RESEARCH ON FLEXURAL BUCKLING OF STAINLESS STEEL WELDED BOX-SECTION BEAM-COLUMNS [J]. Engineering Mechanics, 2018, 35(12): 143-150.
[3] ZHANG You-zhen, YANG Lu, ZHOU Hui, ZHAO Meng-han, ZHOU Yu-hang. FINITE ELEMENT ANALYSES OF LOADING CAPACITY OF FILLET-WELD CONNECTIONS FABRICATED FROM DUPLEX STAINLESS STEEL [J]. Engineering Mechanics, 2017, 34(9): 110-118, 157.
[4] FAN Sheng-gang, ZHENG Jia-cheng, SUN Wen-jun, XIA Xin-feng, LIU Mei-jing. EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF S30408 AUSTENITIC STAINLESS STEEL AT ELEVATED TEMPERATURES [J]. Engineering Mechanics, 2017, 34(4): 167-176, 186.
[5] SHU Gan-ping, DU Er-feng, ZHANG Xin-xin, YANG Zhan-xing, GU Rong-yong, FAN Sheng-gang. EXPERIMENTAL STUDY ON THE FIRE PERFORMANCE OF STEEL BEAM-COLUMN T-STUB JOINTS [J]. Engineering Mechanics, 2016, 33(7): 136-143.
[6] FAN Sheng-gang, SUN Wen-jun, GUI He-yang, XIA Xin-feng, LIU Mei-jing. FIRE RESISTANCE PERFORMANCE ANALYSIS OF H-SECTION STAINLESS STEEL COLUMN UNDER AXIAL COMPRESSION [J]. Engineering Mechanics, 2016, 33(6): 154-162.
[7] SHANG Fan, YANG Lu, ZHAO Meng-han, XU Dong-chen, ZHANG Yong. FEA OF THE OVERALL STABILITY FOR I-SECTION STAINLESS STEEL MEMBER UNDER AXIAL COMPRESSION [J]. Engineering Mechanics, 2016, 33(3): 112-119.
[8] JIANG Zi-qin, GUO Yan-lin, WANG Xiao-an, ZHANG Bo-hao. THEORETICAL STUDY ON BOLT DESIGN METHODS FOR DOUBLE RECTANGULAR TUBE ASSEMBLED BUCKLING-RESTRAINED BRACE [J]. Engineering Mechanics, 2016, 33(3): 55-64.
[9] WANG Yuan-qing, WANG Zong-yi, DU Xin-xi, HENG Yue-kun, ZONG Liang, QIN Zhong-hua. DESIGN AND OPTIMIZATION OF AN ACRYLIC BALL SUPPORTED BY A STAINLESS STEEL LATTICED SHELL FOR THE ULTRA-LARGE NEUTRINO CENTRAL DETECTOR [J]. Engineering Mechanics, 2016, 33(3): 10-17.
[10] YUAN Huan-xin, WANG Yuan-qing, SHI Yong-jiu, ZHU Yi-feng, GARDNER Leroy. BEHAVIOR OF INTERACTIVE BUCKLING IN WELDED STAINLESS STEEL BOX SECTION COLUMNS [J]. Engineering Mechanics, 2015, 32(9): 84-91.
[11] WANG Meng, YANG Wei-guo, WANG Yuan-qing, CHANG Ting, SHI Yong-jiu. STUDY ON HYSTERETIC CONSTITUTIVE MODEL OF AUSTENITIC STAINLESS STEEL [J]. Engineering Mechanics, 2015, 32(11): 107-114.
[12] LI Guo-chang, SUN Qing, GUO Xiao-long, FAN Zong-shuai. FINITE ELEMENT ANALYSIS ON HYSTERETIC PERFORMANCE OF A T-STUB CONNECTED SEMI-RIGID JOINT BETWEEN RECTANGULAR STEEL TUBE COLUMN AND H-SHAPED STEEL BEAM [J]. Engineering Mechanics, 2014, 31(增刊): 32-35.
[13] WU Zhao-qi, JIANG Shao-fei, YU Lu, ZHU Xiao-ming. EXPERIMENTAL RESEARCH ON THE HYSTERETIC BEHAVIOR OF BOLTED T-STUB CONNECTION WITH INSERTED PLATES [J]. Engineering Mechanics, 2014, 31(2): 164-169.
[14] WANG Xiao-an, GUO Yan-lin. BOLT CONNECTION BEHAVIOR AND DESIGN OF A FOUR-ANGLE ASSEMBLED STEEL BUCKLING-RESTRAINED BRACE: NUMERICAL ANALYSIS [J]. Engineering Mechanics, 2014, 31(2): 15-24.
[15] GUO Yan-lin, WANG Xiao-an. BOLT CONNECTION BEHAVIOR AND DESIGN OF A FOUR-ANGLE ASSEMBLED STEEL BUCKLING-RESTRAINED BRACE: THEORETICAL ANALYSIS [J]. Engineering Mechanics, 2014, 31(1): 56-63,84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!