Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (2): 154-164.doi: 10.6052/j.issn.1000-4750.2017.12.0938

Previous Articles     Next Articles

COMPUTATIONAL METHOD FOR AXIAL COMPRESSION CAPACITY OF DOUBLE STEEL-CONCRETE COMPOSITE SHEAR WALLS WITH CONSIDERATION OF BUCKLING

WEI Fang-fang1, ZHENG Ze-jun1, YU Jun1, WANG Yong-quan2   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China;
    2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
  • Received:2017-12-11 Revised:2018-03-15 Online:2019-02-22 Published:2019-02-22

Abstract: To investigate the effect of steel plate buckling on the axial compression bearing capacities of double steel-concrete composite (DSCC) shear walls, the finite element models were built using ABAQUS in accordance with four axial tests of DSCC shear walls. In the numerical models, concrete was modeled with solid elements, steel plate with shell element and shear connectors with nonlinear spring element SpringA. Moreover, the nonlinear behavior of materials and initial imperfection of steel plates were taken into account in the analysis. After the validation of numerical models, the effects of different parameters on the local buckling of steel plates were investigated, and the formula to calculate the buckling stress was obtained. The numerical results indicate that: if the local buckling goes through the transverse section of steel wall plates, the failure mode is concrete crushing at the buckling position, and if no buckling occurs, the failure mode is yielding in the steel plates; when the width of side steel plates is small, no buckling occurs at the side plates. Based on the buckling analysis and ultimate stress state analysis, a new approach was proposed to compute the axial compression bearing capacity of DSCC shear walls with the consideration of steel plate buckling. The results show that: compared with the calculation formula in the standard JGJ/T 380—2015, the proposed approach improves the accuracy and stability in estimating the axial bearing capacity and can be used for further research and engineering practice of DSCC shear walls.

Key words: double steel-concrete composite (DSCC) shear wall, axial compression bearing capacity, steel plate buckling, computation method, numerical models

CLC Number: 

  • TU398
[1] Pryer J W, Bowerman H G. The development and use of British steel Bi-Steel[J]. Journal of Constructional Steel Research, 1998, 46(1):173-178.
[2] Takeuchi M, Narikawa M, Matsuo I, et al. Study on a concrete filled structure for nuclear power plants[J]. Nuclear Engineering and Design, 1998, 179(2):209-223.
[3] 祝文君, 马军, 黄会平, 等. 双层钢板组合剪力墙在异型结构中的应用及研究[J]. 特种结构, 2010, 27(2):14-16. Zhu Wenjun, Ma Jun, Huang Huiping, et al. Application and research of double-layer steel composite shear wall in the special structure[J]. Special Structures, 2010, 27(2):14-16. (in Chinese)
[4] 丁朝辉, 江欢成, 曾菁, 等. 双钢板-混凝土组合墙的大胆尝试——盐城电视塔结构设计[J]. 建筑结构, 2011, 41(12):87-91. Ding Zhaohui, Jiang Huancheng, Zeng Jing, et al. An innovative application of SCS composite wall:Structural design of Yancheng TV Tower[J]. Building Structure, 2011, 41(12):87-91. (in Chinese)
[5] 赵宏, 雷强, 侯胜利, 等. 八柱巨型结构在广州东塔超限设计中的工程应用[J]. 建筑结构, 2012, 42(10):1-6. Zhao Hong, Lei Qiang, Hou Shengli, et al. Engineering application of 8 columns mega frame-core wall system in Guangzhou East Tower[J]. Building Structure, 2012, 42(10):1-6. (in Chinese)
[6] Eom T S, Park H G, Lee C H, et al. Behavior of double skin composite wall subjected to in-plane cyclic loading[J]. Journal of Structural Engineering, 2009, 135(10):1239-1249.
[7] 聂建国, 卜凡民, 樊健生. 低剪跨比双钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2011, 32(11):74-81. Nie Jianguo, Bu Fanmin, Fan Jiansheng. Experimental research on seismic behavior of low shear-span ratio composite shear wall with double steel plates and infill concrete[J]. Journal of Building Structures, 2011, 32(11):74-81. (in Chinese)
[8] 李盛勇, 聂建国, 刘付钧, 等. 外包多腔钢板-混凝土组合剪力墙抗震性能试验研究[J]. 土木工程学报, 2013, 46(10):26-38. Li Shengyong, Nie Jianguo, Liu Fujun, et al. Experimental study on aseismic behavior of concrete filled double-steel-plate composite shear walls[J]. China Civil Engineering Journal, 2013, 46(10):26-38. (in Chinese)
[9] Ji X, Jiang F, Qian J. Seismic behavior of steel tube-double steel plate-concrete composite walls:Experimental tests[J]. Journal of Constructional Steel Research, 2013, 86:17-30.
[10] 马恺泽, 刘伯权, 鄢红良, 等. 高轴压比双层钢板-高强混凝土组合剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(5):218-224. Ma Kaize, Liu Boquan, Yan Hongliang, et al. Experimental investigation on aseismic behavior of dual steel high strength concrete shear walls with high axial load ratio[J]. Engineering Mechanics, 2014, 31(5):218-224. (in Chinese)
[11] 李健, 罗永峰, 郭小农, 等. 双层钢板组合剪力墙抗震性能试验研究[J]. 同济大学学报(自然科学版), 2013, 41(11):1636-1643. Li Jian, Luo Yongfeng, Guo Xiaonong, et al. Experimental research on seismic behavior of double skin composite shear wall[J]. Journal of Tongji University, 2013, 41(11):1636-1643. (in Chinese)
[12] 刘鸿亮, 蔡健, 杨春, 等. 带约束拉杆双层钢板内填混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(6):84-92. Liu Hongliang, Cai jian, Yang Chun, et al. Experimental study on seismic behavior of composite shear wall with double steel plates and infill concrete with binding bars[J]. Journal of Building Structures, 2013, 34(6):84-92. (in Chinese)
[13] 朱立猛, 周德源, 赫明月. 带约束拉杆钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2013, 34(6):93-102. Zhu Limeng, Zhou Deyuan, He Mingyue, Experimental research on seismic behavior of composite concrete and steel plate shear walls with binding bars[J]. Journal of Building Structures, 2013, 34(6):93-102. (in Chinese)
[14] 韦芳芳, 杜金娥, 胡雪峰, 等. 单面受火双钢板-混凝土组合剪力墙的耐火性能试验研究[J]. 东南大学学报(自然科学版), 2016, 46(3):518-522. Wei Fangfang, Du Jin'e, Hu Xuefeng, et al. Experimental research on fire performance of concrete filled double steel-plate composite wall exposed to one-side fire[J]. Journal of Southeast University, 2016, 46(3):518-522. (in Chinese)
[15] 胡红松, 聂建国. 双钢板-混凝土组合剪力墙变形能力分析[J]. 建筑结构学报, 2013, 34(5):52-62. Hu Hongsong, Nie Jianguo. Deformability analysis of composite shear walls with double steel plates and infill concrete[J]. Journal of Building Structures, 2013, 34(5):52-62. (in Chinese)
[16] 张有佳, 李小军, 贺秋梅, 等. 钢板混凝土组合墙体局部稳定性轴压试验研究[J]. 土木工程学报, 2016, 49(1):62-68. Zhang Youjia, Li Xiaojun, He Qiumei, et al. Experimental study on local stability of composite walls with steel plates and filled concrete under concentric loads[J]. China Civil Engineering Journal, 2016, 49(1):62-68. (in Chinese)
[17] JGJ 138-2016, 组合结构设计规范[S]. 北京:中国建筑工业出版社, 2016. JGJ 138-2016, Code for design of composite structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[18] JGJ/T 380-2015, 钢板剪力墙技术规程[S]. 北京:中国建筑工业出版社, 2015. JGJ/T 380-2015, Technical specification for steel plate shear walls[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[19] 刘阳冰, 杨庆年, 刘晶波, 等. 双钢板-混凝土剪力墙轴心受压性能试验研究[J]. 四川大学学报(工程科学版), 2016, 48(2):83-90. Liu Yangbing, Yang Qingnian, Liu Jingbo, et al. Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete[J]. Journal of Sichuan University, 2016, 48(2):83-90. (in Chinese)
[20] GB 50010-2010, 混凝土结构设计规范[S]:北京:中国建筑工业出版社, 2011. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[21] Alfarah B, López-Almansa F, Oller S. New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures[J]. Engineering Structures, 2017, 132:70-86.
[22] Krätzig W B, Pölling R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters[J]. Computers & Structures, 2004, 82(15):1201-1215.
[23] Ollgaard J G, Slutter R G, Fisher J W. Shear strength of stud connectors in lightweight and normalweight concrete[J]. AISC Engineering, 1971, 8(4):55-64.
[24] 马原. 组合结构栓钉连接件抗拔性能研究[D]. 北京:清华大学, 2015:85-92. Ma Yuan. Research on the uplift performance of headed studs in composite structure[D]. Beijing:Tsinghua University, 2015:85-92. (in Chinese)
[25] 庄茁. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009:209-217. Zhuang Zhuo. Finite element analysis and applications based on software ABAQUS[M]. Beijing:Tsinghua University Press, 2009:209-217. (in Chinese)
[26] DS Simulia Corporation. Getting started with abaqus:interactive edition[Z]. Rhode Island:DS Simulia Corporation, 2012.
[27] Yang Y, Liu J, Fan J. Buckling behavior of double-skin composite walls:An experimental and modeling study[J]. Journal of Constructional Steel Research, 2016, 121:126-135.
[28] Akiyama H, Sekimoto H, Fukihara M, et al. A compression and shear loading test of concrete filled steel bearing wall[C]//Transaction of the 11th International Conference on Structural Mechanics in Reactor Technology. Tokyo, Japan:International Association for Structural Mechanics in Reactor Technology (IASMiRT), 1991:323-328.
[29] 张有佳, 李小军. 钢板混凝土组合墙轴压受力性能有限元分析[J]. 工程力学, 2016, 33(8):84-92. Zhang Youjia, Li Xiaojun, Finite element analysis of axial compressive stress performance for steel plate reinforced concrete compound walls[J]. Engineering Mechanics, 2016, 33(8):84-92. (in Chinese)
[30] Pallares L, Hajjar J F. Headed steel stud anchors in composite structures, Part Ⅱ:tension and interaction[J]. Journal of Constructional Steel Research, 2010, 66(2):213-228.
[31] Huang Z, Liew J Y R. Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors[J]. Journal of Constructional Steel Research, 2016, 124:142-162.
[32] Hao T, Cao W, Qiao Q, et al. Structural performance of composite shear walls under compression[J]. Applied Sciences, 2017, 7(2):162.
[1] SHI Yan-li, ZHOU Xu-hong, XIAN Wei, WANG Wen-da. RESEARCH ON BASIC SHEAR PERFORMANCE OF CONCRETE FILLED RECTANGULAR STEEL TUBULAR MEMBERS WITHOUT END-PLATE [J]. Engineering Mechanics, 2018, 35(12): 25-33.
[2] KE Xiao-jun, SU Yi-sheng, SHANG Xiao-yu, SUN Hai-yang. STRENGTH CALCULATION AND ECCENTRIC COMPRESSIVE TEST OF STEEL TUBE-REINFORCED CONCRETE COMPOSITE COLUMNS [J]. Engineering Mechanics, 2018, 35(12): 134-142.
[3] TIAN Jian-bo, SHI Qing-xuan, LIU Yun-he, LI Shen, MA Hui. RESEARCH ON ASEISMIC PERFORMANCE OF PRC COUPLING BEAM-HYBRID COUPLED SHEAR WALL SYSTEM [J]. Engineering Mechanics, 2018, 35(11): 53-67.
[4] ZHANG Wen-yuan, WANG Ke, WANG Qiang, CHEN Yong, ZHOU Yu, DING Yu-kun. ASEISMIC BEHAVIOR OF COMPOSITE SHEAR WALL WITH STIFFENED DOUBLE STEEL PLATES AND INFILLED CONCRETE [J]. Engineering Mechanics, 2018, 35(11): 125-133.
[5] YANG Yong, CHEN Yang. EXPERIMENTAL STUDY ON THE SHEAR CAPACITY OF PBL SHEAR CONNECTORS [J]. Engineering Mechanics, 2018, 35(9): 89-96.
[6] ZHOU Jing, CHEN Zhuo-sheng, ZHAO Wei-feng, YANG Bin. EXPERIMENTAL STUDY ON THE AXIAL COMPRESSION OF THIN-WALLED STEEL TUBE/BAMBOO-PLYWOOD COMPOSITE HOLLOW COLUMNS [J]. Engineering Mechanics, 2018, 35(8): 91-99.
[7] SUN Jian, QIU Hong-xing, TAN Zhi-cheng, JIANG Hong-bo. EXPERIMENTAL STUDY ON I-SHAPED PRECAST REINFORCED CONCRETE SHEAR WALLS USING BOLTED CONNECTIONS [J]. Engineering Mechanics, 2018, 35(8): 172-183,191.
[8] WU Qi-jian, WANG Chen, ZHI Xu-dong. EXPERIMENTAL AND SIMULATION STUDIES OF FAILURE MODES OF GFRP-REINFORCED SHORT STEEL TUBES UNDER AXIALLY COMPRESSIVE LOADS [J]. Engineering Mechanics, 2018, 35(8): 184-191.
[9] CHEN Zong-ping, LIU Xiang, ZHOU Wen-xiang. INTERFACE BOND BEHAVIOR BETWEEN CIRCLE STEEL TUBE AND HIGH STRENGTH CONCRETE AFTER HIGH TEMPERATURES [J]. Engineering Mechanics, 2018, 35(8): 192-200,256.
[10] WANG Da-yang, HAN Qi-hao, ZHANG Yong-shan. EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB [J]. Engineering Mechanics, 2018, 35(7): 83-93,138.
[11] LI Yu-shun, ZHANG Jia-liang, TONG Ke-ting, GUO Jun, WU Pei. STUDY ON INTERFACE SLIP AND DEFORMATION OF BAMBOO-STEEL COMPOSITE I-BEAMS [J]. Engineering Mechanics, 2018, 35(7): 150-158,166.
[12] MA Hui, LI San-zhi, LI Zhe, WANG Zhen-shan, LIANG Jiong-feng. SHEAR BEARING CAPACITY OF STEEL REINFORCED RECYCLED CONCRETE COLUMN-STEEL BEAM COMPOSITE FRAME JOINTS [J]. Engineering Mechanics, 2018, 35(7): 176-186.
[13] XU Zhi-feng, CHEN Zhong-fan, ZHU Song-song, LIU Ji, YIN Zhi-qi. STUDY OF LIGHTWEIGHT STEEL HIGH-STRENGTH FOAMED CONCRETE SHEAR WALL COVERED WITH STRAW BOARD SUBJECTED TO AXIAL LOADING [J]. Engineering Mechanics, 2018, 35(7): 219-231.
[14] JIANG Zhi-lin, ZHAO Jun-hai, LÜ Mei-tong, ZHANG Lei. Unified solution of limit internal pressure for double-layered thick-walled cylinder based on bilinear hardening model [J]. Engineering Mechanics, 2018, 35(S1): 6-12.
[15] ZHANG Yong-ping, XU Rong-qiao. Analytical analysis for calculating deflections of multilayered composite beams with interlayer slips [J]. Engineering Mechanics, 2018, 35(S1): 22-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!