Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (2): 229-238,248.doi: 10.6052/j.issn.1000-4750.2017.11.0903

Previous Articles     Next Articles

SLIDING-MODE FAULT TOLERANT CONTROLLER DESIGN FOR VEHICLE ACTIVE SUSPENSION SYSTEMS BASED ON T-S FUZZY MODEL

PANG Hui, YANG Jun-jie, LIU Xue   

  1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048
  • Received:2017-11-27 Revised:2018-04-16 Online:2019-02-22 Published:2019-02-22

Abstract: To resolve the problem of riding comfort and control stability caused by the variation of vehicle suspension sprung masses and the stochastic actuator faults, a novel sliding-mode fault tolerant controller design method is proposed for vehicle active suspension systems based on T-S fuzzy model. To describe the system parameter uncertainties of active suspensions, a quarter-vehicle nonlinear dynamic model based on T-S fuzzy approach is first established, in which a fault tuning factor is employed to denote the amplitude of actuator faults, thus the control plant of vehicle active suspension with considering the uncertainties of vehicle suspension sprung body masses and the actuator faults is obtained. Based on this control model, an appropriate sliding-mode surface function and fault tolerant control law are developed to realize the fault tolerant control of the fault suspension system through the combination of classical sliding control theory and adaptive control theory. Moreover, the stability analysis and suspension safety constraint performances are carried out by Lyapunov stability theory. Finally, a numerical example is provided to verify the effectiveness and applicability of the proposed fault tolerant controller under different road conditions.

Key words: active suspension, system parameter uncertainties, sliding-mode fault tolerant control, T-S fuzzy model, Lypaunov stability

CLC Number: 

  • U463.3
[1] 余志生. 汽车理论[M]. 第5版. 北京:机械工业出版社, 2009. Yu Zhisheng. Automobile theory[M]. 5th ed. Beijing:China Machine Press, 2009. (in Chinese)
[2] 周兵, 赵保华. 汽车主动悬架自适应模糊PID控制仿真研究[J]. 湖南大学学报(自然科学版), 2009, 36(12):27-30. Zhou Bing, Zhao Baohua. Simulation study of self-adaptive fuzzy-PID control of active suspension[J]. Journal of Hunan University (Natural Sciences), 2009, 36(12):27-30. (in Chinese)
[3] Li H, Yu J, Hilton C, et al. Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8):3328-3338.
[4] 贾启芬, 于雯, 刘习军, 等. 汽车悬架系统的分段线性非线性振动机理的研究[J]. 工程力学, 2005, 22(1):88-92. Jia Qifen, Yu Wen, Liu Xijun, et al. Dynamic characteristics of bilinear suspension system of vehicles[J]. Engineering Mechanics, 2005, 22(1):88-92. (in Chinese)
[5] 喻凡, 张勇超. 馈能型车辆主动悬架技术[J]. 农业机械学报, 2010, 41(1):1-6. Yu Fan, Zhang Yongchao. Technology of regenerative vehicle active suspensions[J]. Transactions of the Chinese Society of Agricultural, 2010, 41(1):1-6. (in Chinese)
[6] Sun W, Zhao Z, Gao H. Saturated adaptive robust control for active suspension systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9):3889-3896.
[7] Rath J J, Defoort M, Karimi H R, et al. Output feedback active suspension control with higher order terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2):1392-1403.
[8] Huang Y, Na J, Wu X, et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance[J]. Isa Transactions, 2015, 54:145-155.
[9] Huang S J, Lin W C. Adaptive fuzzy controller with sliding surface for vehicle suspension control[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(4):550-559.
[10] Wen S, Chen M Z Q, Zeng Z, et al. Fuzzy control for uncertain vehicle active suspension systems via dynamic sliding-mode approach[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2017, 47(1):24-32.
[11] 高瑞贞, 张京军, 赵子月, 等. 基于改进遗传算法的半主动悬架系统模糊控制优化研究[J]. 工程力学, 2012, 29(1):240-248. Gao Ruizhen, Zhang Jingjun, Zhao Ziyue, et al. Research on the fuzzy control of semi-active suspension systems based on improved genetic algorithms[J]. Engineering Mechanics, 2012, 29(1):240-248. (in Chinese)
[12] Gaspar P, Szaszi I, Bokor J. Design of robust controllers for active vehicle suspension using the mixed μ synthesis[J]. Vehicle System Dynamics, 2003, 40(4):193-228.
[13] Na J, Huang Y, Wu X, et al. Active adaptive estimation and control for vehicle suspensions with prescribed performance[J]. IEEE Transactions on Control Systems Technology, 2017, 26(6):2063-2077.
[14] Zhao F, Ge S S, Tu F, et al. Adaptive neural network control for active suspension system with actuator saturation[J]. IET Control Theory and Applications, 2016, 10(14):1696-1705.
[15] 高振刚, 李晓雪, 曹宇, 等. 基于作动器故障估计的汽车主动悬架容错控制研究[J]. 内蒙古大学学报(自然科学版), 2016, 47(5):533-541. Gao Zhengang, Li Xiaoxue, Cao Yu, et al. Fault tolerant control of active suspension based on actuator fault estimation[J]. Journal of Inner Mongolia University (Natural Science), 2016, 47(5):533-541. (in Chinese)
[16] 杨柳青, 陈无畏, 汪洪波. 基于H2/H控制的汽车主动悬架最优鲁棒容错控制[J]. 中国机械工程, 2012, 23(24):3013-3019. Yang Liuqing, Chen Wuwei, Wang Hongbo. Optimal robust fault tolerant control for vehicle active suspension system based on H2/H approach[J]. China Mechanical Engineering, 2012, 23(24):3013-3019. (in Chinese)
[17] 杨柳青, 陈无畏. 基于传感器信号重构的汽车主动悬架主动容错控制[J]. 汽车工程, 2013, 35(12):1084-1091. Yang Liuqing, Chen Wuwei. Active fault tolerant control of vehicle active suspension based on sensor signal reconstruction[J]. Automotive Engineering, 2013, 35(12):1084-1091. (in Chinese)
[18] 陈双, 钟孝伟. 汽车主动悬架作动器故障诊断与控制补偿方法[J]. 汽车技术, 2018(2):40-44. Chen Shuang, Zhong Xiaowei. Failure diagnosis and control compensation of vehicle active suspension actuator[J]. Automobile Technology, 2018(2):40-44. (in Chinese)
[19] Chen M C, Wang W Y, Su S F, et al. Robust T-S fuzzy-neural control of uncertain active suspension systems[J]. International Journal of Fuzzy Systems, 2010, 12(4):321-329.
[20] 吴忠强, 陈金钉, 吴云双, 等. 基于T-S模型的汽车主动悬架H控制研究[J]. 振动与冲击, 2007, 26(11):64-69. Wu Zhongqiang, Chen Jinding, Wu Yunshuang, et al. H control of automotive active suspension based on T-S model[J]. Journal of Vibration and Shock, 2007, 26(11):64-69. (in Chinese)
[21] 朱芳来, 蒋鹏, 李晓航. 基于T-S模糊模型的观测器和动态输出反馈容错控制器设计[J]. 西安交通大学学报, 2016, 50(9):91-96. Zhu Fanglai, Jiang Peng, Li Xiaohang. Design of observer and dynamic output feedback fault tolerant controller based on T-S fuzzy model[J]. Journal of Xi'an Jiaotong University, 2016, 50(9):91-96. (in Chinese)
[22] 徐光智, 孙秀霞, 董文瀚, 等. 非线性系统的自适应输出反馈优化跟踪控制[J]. 西安交通大学学报, 2017, 51(1):128-134. Xu Gaungzhi, Sun Xiuxia, Dong Wenhan, et al. Adaptive output feedback optimal tracking control for nonlinear systems[J]. Journal of Xi'an Jiaotong University, 2017, 51(1):128-134. (in Chinese)
[23] Li H, Liu H, Gao H, et al. Reliable fuzzy control for active suspension systems with actuator delay and fault[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(2):342-357.
[24] Li H, Liu H, Gao H. Actuator delayed active vehicle suspension control:A T-S fuzzy approach[C]. IEEE International Conference on Fuzzy Systems, 2011:2358-2363.
[1] WANG Wei, SONG Yu-ling, WANG Ti-chun, CUI Li. INTEllIGENT CONTROL OF AUTOMOTIVE SEMI-ACTIVE SUSPENSION WITH UNCERTAIN FACTORS [J]. Engineering Mechanics, 2012, 29(9): 337-342.
[2] GAO Rui-zhen;ZHANG Jing-jun;ZHAO Zi-yue;SUN Yang. RESEARCH ON THE FUZZY CONTROL OF SEMI-ACTIVE SUSPENSION SYSTEMS BASED ON IMPROVED GENETIC ALGORITHMS [J]. Engineering Mechanics, 2012, 29(1): 240-248.
[3] WANG Jian;ZHOU Chun-gui;ZHU Chang-chun;XIE Shi-lin;ZHANG Xi-nong. HYBRID MODELING OF AUTOMOTIVE SUSPENSION SYSTEM USING MAGNETORHEOLOGICAL DAMPER [J]. Engineering Mechanics, 2007, 24(10): 0-174,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!