Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (2): 195-204.doi: 10.6052/j.issn.1000-4750.2017.11.0895

Previous Articles     Next Articles

GEOMETRICAL OPTIMIZATION AND EXPERIMENTAL STUDY OF ALUMINUM HONEYCOMB SANDWICH CONSTRUCTION FORMWORKS

XIAO Tan1, HU Sen1, WU Wei1, XIONG Hui-fang2   

  1. 1. Center for Mechanical Teaching and Testing, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China;
    2. School of Computer and Electronic Information, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
  • Received:2017-11-23 Revised:2018-01-30 Online:2019-02-22 Published:2019-02-22

Abstract: The technique innovation of construction formwork is of great importance in concrete engineering. The possibility of applying honeycomb sandwich structures to aluminum construction formwork was analyzed by computational and test methods. The equivalent elastic parameters of a honeycomb core structure were calculated based on Gibson’s theory, and then the stresses and deformation of the honeycomb sandwich construction formwork subjected to a uniformly distributed load were computed by using Reissner’s model. The geometrical parameters of the honeycomb sandwich structure were optimized under the deformation and constraint conditions according to the industry standard of aluminum construction formwork. Finally, the bending tests of the honeycomb sandwich aluminum construction formworks were conducted in which full-field three-dimensional deformation data were acquired by using a digital photogrammetric system. The test results are in a good agreement with that of the theoretical computation. It shows that the mass of the aluminum formwork can be reduced at least 60% after the application of honeycomb sandwich structures.

Key words: honeycomb sandwich structure, construction formwork, geometrical optimization, bending test, deformation measurement

CLC Number: 

  • TU64
[1] 叶海军, 史鸣军. 建筑模板的发展历程及前景[J]. 山西建筑, 2007, 33(31):158-159. Ye Haijun Shi Mingjun. Development process and foreground of the architectural template[J]. Shanxi Architecture, 2007, 33(31):158-159. (in Chinese)
[2] 苑炳南, 许路明. 无背楞全钢大模板的研究与应用[J]. 建筑技术, 1999, 30(8):564. Yuan Bingnan, Xu Luming. Research and application of whole steel panel form without back ridge[J]. Architecture Technology, 1999, 30(8):564. (in Chinese)
[3] 石亚明. 无背楞拼装式全钢大模板技术及应用[J]. 施工技术, 2009, 38(4):79-81. Shi Yaming. Technology and application of all steel large formwork with no dorsal bar assembly[J]. Construction Technology, 2009, 38(4):79-81. (in Chinese)
[4] 杨万喆, 陈学岩. 铝合金模板在建筑工程中的应用[J]. 陕西建筑, 2013(10):23-25. Yang Wanzhe, Chen Xueyan. Application of aluminum formwork in construction engineering[J]. Shanxi Architecture, 2013(10):23-25. (in Chinese)
[5] 孔令标. 论铝合金组合模板系统施工的优越性与局限性[J]. 广东建材, 2013(3):64-67. Kong Lingbiao. Advantages and limitations of assembled aluminum formwork system in construction[J]. Guangdong Building Materials, 2013(3):64-67. (in Chinese)
[6] 程文礼, 袁超, 邱启艳, 等. 航空用蜂窝夹层结构及制造工艺[J]. 航空制造技术, 2015(7):94-98. Cheng Wenli, Yuan Chao, Qiu Qiyan, et al. Honeycomb sandwich structure and manufacturing process in aviation industry[J]. Aeronautical Manufacturing Technology. 2015(7):94-98. (in Chinese)
[7] Reissner E. On bending of elastic plates[J]. Quarterly of Applied Mathematics, 1947, 5(1):55-68.
[8] Gibson L J, Ashby M F. Cellular solids, structure and properties[M]. Oxford:Pergamon Press, 1988.
[9] 赵金森. 铝蜂窝夹层板的力学性能等效模型研究[D]. 南京:南京航空航天大学, 2006. Zhao Jinsen. Research on equivalent models of the mechanical function for aluminum honeycomb sandwich panel[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
[10] 王栋. 双层金属蜂窝夹层结构的设计与力学分析[D]. 哈尔滨:哈尔滨工业大学, 2007. Wang Dong. Design and mechanical analysis of double-layer metallic honeycomb sandwich structure[D]. Harbin:Harbin Institute of Technology, 2007. (in Chinese)
[11] Catapano A, Montemurro M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part I:Homogenization of core properties[J]. Composite Structures, 2014, 118:664-676.
[12] Catapano A, Montemurro M. A multi-scale approach for the optimum design of sandwich plates with honeycomb core. Part Ⅱ:The optimisation strategy[J]. Composite Structures, 2014, 118:677-690.
[13] 洪俊青, 刘伟庆, 方海. 格构腹板增强型泡沫复合材料夹层结构腹板平面内屈曲分析[J]. 工程力学, 2015, 32(8):66-73. Hong Junqing, Liu Weiqing, Fang Hai. Web buckling behaviors under in-plane compression for web lattice enhanced foam-sandwich structures[J]. Engineering Mechanics, 2015, 32(8):66-73. (in Chinese)
[14] 陈春强, 陈前. 电流变夹层板的拓扑优化研究[J]. 工程力学, 2016, 33(增刊):290-295. Chen Chunqiang, Chen Qian. Topology optimization of semi-active vibration control for an electrorheological sandwich plate[J]. Engineering Mechanics, 2016, 33(Suppl):290-295. (in Chinese)
[15] 韩丽婷, 刘伟庆. 复合材料夹层结构自插式平接节点抗弯性能试验研究[J]. 工程力学, 2015, 32(11):115-122. Han Liting, Liu Weiqing. Experimental studies on bending performance of the insert adherence joints for composite sandwich structure[J]. Engineering Mechanics, 2015, 32(11):115-122. (in Chinese)
[16] Sun G Y, Huo X T, Chen D D, et al. Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression[J]. Materials and Design, 2017, 133:154-168.
[17] DBJ-15-96-2013, 铝合金模板技术规范[S]. 北京:中国城市出版社, 2013. DBJ-15-96-2013, Technical code of aluminum alloy formwork[S]. Beijing:China City Press, 2013. (in Chinese)
[18] JGJ-386-2016, 组合铝合金模板工程技术规程[S]. 北京:中国建筑工业出版社, 2016. JGJ-386-2016, Technical specification for combined aluminum alloy formwork engineering[S]. Beijing:China Construction Industry Press, 2016. (in Chinese)
[19] 张德海, 梁晋, 唐正宗, 等. 基于近景摄影测量和三维光学测量的大幅面测量新方法[J]. 中国机械工程, 2009, 20(7):817-822. Zhang Dehai, Liang Jin, Tang Zhengzong, et al. New measuring method of large size measurement based on close range photogrammetry and 3D optical measurement[J]. China Mechanical Engineering, 2009, 20(7):817-822. (in Chinese)
[20] 肖振中, 梁晋, 唐正宗, 等. 汽车大型模具实型的三维摄影测量检测[J]. 塑性工程学报, 2009, 16(2):150-155. Xiao Zhenzhong, Liang Jin, Tang Zhengzong, et al. 3D photogrammetry measurement and inspect technology for foam model of auto die[J]. Journal of Plasticity Engineering, 2009, 16(2):150-155. (in Chinese)
[21] 成广民, 丁锁柱. 复合材料蜂窝夹层结构计算的一般方法和进展[J]. 玻璃钢/复合材料, 1996(2):11-13. Cheng Guangmin, Ding Suozhu. Common method and development for composite honeycomb sandwich structure calculation[J]. Fiber Reinforced Plastic/Composites, 1996(2):11-13. (in Chinese)
[22] Davies J M. Lightweight sandwich construction[M]. London:Wiley-Blackwell, 2001:193-255.
[23] Allen H G. Analysis and design of structural sandwich panels[M]. London:Pergamon Press, 1969:8-18.
[24] 沃西源, 夏英伟, 涂彬. 蜂窝夹层结构复合材料特性及破坏模式分析[J]. 航天返回与遥感, 2005, 26(4):45-49. Wo Xiyuan, Xia Yingwei, Tu Bin. The property of honeycomb sandwich structure and the destroy mode analyzing[J]. Spacecraft Recovery and Remote Sensing, 2005, 26(4):45-49. (in Chinese)
[25] 周祝林. 蜂窝夹层结构的最优参数选择[J]. 应用数学和力学, 1985, 6(6):541-549. Zhou Zhulin. Selection of the optimum parameters for sandwich construction with honeycomb core[J]. Applied Mathematics and Mechanics, 1985, 6(6):541-549(in Chinese)
[26] 王颖坚. 蜂窝结构在面内剪切作用下的变形模式[J]. 北京大学学报, 1991, 27(3):301-306. Wang Yingjian. Deformation models of honeycomb cell under in-plane shear[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1991, 27(3):301-306. (in Chinese)
[27] Triantafillou T C, Gibson L J. Failure mode maps for foam core sandwich beams[J]. Materials Science and Engineering, 1987, 95:37-53.
[28] 黎文方. 新型铝合金模板试验测试[J]. 施工技术, 2013, 42(增刊1):279-280. Li Wenfang. Test to new style alloy aluminum formwork[J]. Construction Technology, 2013, 42(Suppl1):279-280. (in Chinese)
[1] MU Fu-jiang, WANG Ji-yang, LI Wei-ping, XU Shi-lang. Experimental study on flexural behavior of steel wire- sprayed ultra high toughness cementitious composites thin plates [J]. Engineering Mechanics, 2018, 35(S1): 338-343.
[2] JIN Zhu-yu, ZHANG Xiao-jing, WANG Hai. NUMERICAL SIMULATIONS FOR THE MIX-MODE BENDING TEST OF THE STITCHED LAMINATES [J]. Engineering Mechanics, 2016, 33(2): 232-241,256.
[3] XU Yun-yan, CHENG Xiao-quan, ZHANG Ji-kui, LI Zheng-neng. STUDY ON COMPOSITE HONEYCOMB SANDWICH STRUCTURE FORMED T-JOINTS UNDER TENSILE LOAD [J]. Engineering Mechanics, 2015, 32(7): 243-248.
[4] LIU Si-jin, FENG Kun, HE Chuan, HE Zheng-shu. STUDY ON THE BENDING MECHANICAL MODEL OF SEGMENTAL JOINT IN SHIELD TUNNEL WITH LARGE CROSS-SECTION [J]. Engineering Mechanics, 2015, 32(12): 215-224.
[5] CHEN Tao, LI Qing-bin, GUAN Jun-feng,QING Long-bang. DEFORMATION MEASUREMENT CORRECTION FOR THE THREADED CONNECTION AND TRANSITION PART UTILIZING SHTB [J]. Engineering Mechanics, 2013, 30(7): 276-281,293.
[6] DONG Yan-peng, L?Zhen-hua. ANALYSIS AND OPTIMIZATION OF BLAST-RESISTANT SANDWICH STRUCTURE UTILISING STRUCTURAL SIMILAR FE MODEL OF HONEYCOMB MATERIAL [J]. Engineering Mechanics, 2013, 30(7): 248-254.
[7] REN Zheng-yue,WANG Li-jiu,SUN Zhi-guo. EXPERIMENTAL RESEARCH AND FINITE ELEMENT ANALYSIS ON SEISMIC BEHAVIOR OF CONCRETE WALLS WITH CONSTRUCTION FORMWORK [J]. Engineering Mechanics, 2012, 29(12): 147-155.
[8] ZHANG Xiu-fang;XU Shi-lang. ANALYSIS ON FLEXURAL CAPACITY AND DUCTILITY OF STEEL REINFORCED ULTRAHIGH TOUGHNESS CEMENTITIOUS COMPOSITE BEAMS [J]. Engineering Mechanics, 2009, 26(12): 133-141,.
[9] ZHANG Jun;WANG Lin;SUN Ming;LIU Qian. EFFECT OF COARSE/FINE AGGREGATE RATIO AND CEMENT MATRIX STRENGTH ON FRACTURE PARAMETERS OF CONCRETE [J]. Engineering Mechanics, 2004, 21(1): 136-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!