Engineering Mechanics ›› 2019, Vol. 36 ›› Issue (1): 227-237.doi: 10.6052/j.issn.1000-4750.2017.10.0785

Previous Articles     Next Articles

NUMERICAL SIMULATION METHOD FOR MOTIONS OF THE ICEBREAKER IN LEVEL ICE

GAO Liang-tian, WANG Jian-wei, WANG Qing, JIA Bin, WANG Yong-kui, SHI Li   

  1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
  • Received:2017-10-17 Revised:2018-01-16 Online:2019-01-29 Published:2019-01-10

Abstract: To study the motion characteristics of the icebreaker in level ice and the failure mode of sea ice, a six-degrees-of-freedom kinetic equation is established including ice loads, open water resistance, propeller thrust and rudder forces. Considering the influence of the elastic bending of sea ice on icebreaking force, the secondary fracture and the dynamic bending failure criterion of sea ice are introduced, so that a more accurate and perfect ship-ice dynamic contact model is proposed. Based on these theories, the direct sailing and the turning motions of the Swedish icebreaker, Tor Viking Ⅱ, are simulated in level ice. The numerical simulation results are compared with full-scale trial data to verify its rationality. The results indicate that the simulated trajectory is consistent with the real trajectory. The relative error of the maximum turning diameter is only 3.32%. Therefore, the numerical simulation method established in this paper is able to authentically simulate the motions of the icebreaker in level ice.

Key words: icebreaker, icebreaking motion, numerical simulation, ice load, sea ice fracture

CLC Number: 

  • U674.21
[1] Ettema R, Sharifi M B, Georgakakos K P, et al. Chaos in continuous-mode icebreaking[J]. Cold Regions Science & Technology, 1991, 19(2):131-144.
[2] Izumiyama K, Kitagawa H, Koyama K, et al. On the interaction between a conical structure and ice sheet[C]//11st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1991:155-166.
[3] Liu R, Xue Y, Lu X, et al. Simulation of ship navigation in ice rubble based on peridynamics[J]. Ocean Engineering, 2018, 148:286-298.
[4] 黄焱, 关湃, 禹沐. 破冰船航行状态在海冰作用下的运动响应分析[J]. 数学的实践与认识, 2015, 45(2):149-160. Huang Yan, Guan Pai, Yu Mu. Study of the sailing's moving responses of an icebreaker in ice[J]. Mathematics in Practice & Theory, 2015, 45(2):149-160. (in Chinese)
[5] Kashtelyan V I, Poznyak I I, Ryvlin A Y. Resistance of ice to ship movement[J]. Sudostroyeniye (Soviet Shipbuilding)[USSR], 1968.
[6] Lindqvist G. A straightforward method for calculation of ice resistance of ships[C]//10th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 1989:722-735.
[7] Varsta P. On the mechanics of ice load on ships in level ice in the Baltic Sea[J]. 1983(8).
[8] Wang S. A dynamic model for breaking pattern of level ice by conical structures[J]. 2001(156):2+6-94.
[9] Su B, Riska K, Moan T. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science & Technology, 2010, 60(3):177-188.
[10] Tan X, Su B, Riska K, et al. A six-degrees-of-freedom numerical model for level ice-ship interaction[J]. Cold Regions Science & Technology, 2013, 92(8):1-16.
[11] 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6):21-29. Zhou Zhaoming, Sheng Ziyin, Feng Wushi. On maneuverability prediction for multipurpose cargo ship[J]. Ship Engineering, 1983(6):21-29. (in Chinese)
[12] Bertram V. Practical ship hydrodynamics[M]. Oxford, UK:Elsevier/Butterworth-Heinemann, 2012:177-203.
[13] 盛振邦, 刘应中. 船舶原理. 下册[M]. 上海:上海交通大学出版社, 2005:304-332. Sheng Zhenbang, Liu Yingzhong. Principle of naval architecture. Vol. 2[M]. Shanghai:Shanghai Jiaotong University Press, 2005:304-332. (in Chinese)
[14] Haines E. Point in polygon strategies[J]. Graphics Gems IV, 1994:24-46.
[15] Zhou Q, Peng H, Qiu W. Numerical investigations of ship-ice interaction and maneuvering performance in level ice[J]. Cold Regions Science & Technology, 2016, 122(1):36-49.
[16] Riska K. Models of ice-structure contact for engineering applications[J]. Studies in Applied Mechanics, 1995, 42(06):77-103.
[17] Kerr A D. The bearing capacity of floating ice plates subjected to static or quasi-static loads[J]. Journal of Glaciology, 1975, 17(76):229-268.
[18] Tan X, Su B, Riska K, et al. The effect of heave, pitch and roll motions to ice performance of ships[C]//Iahr International Symposium on Ice, 2012:1080-1093.
[19] Valanto P. The icebreaking problem in two dimensions:experiments and theory[J]. Journal of Ship Research, 1992, 36(4):299-316.
[20] 武文华, 于佰杰, 许宁, 等. 海冰与锥体抗冰结构动力作用的数值模拟[J]. 工程力学, 2008, 25(11):192-196. Wu Wenhua, Yu Baijie, Xu Ning, et al. Numerical simulation of dynamic ice action on conical structure[J]. Engineering Mechanics, 2008, 25(11):192-196. (in Chinese)
[21] 王刚, 武文华, 岳前进. 锥体接触宽度对冰排弯曲破坏模式影响的有限元分析[J]. 工程力学, 2008, 25(1):235-240. Wang Gang, Wu Wenhua, Yue Qianjin. FEM analysis on ice-bending failure mode with width effect of ice-cone interaction[J]. Engineering Mechanics, 2008, 25(1):235-240. (in Chinese)
[22] Di S, Xue Y, Wang Q, et al. Discrete element simulation of ice loads on narrow conical structures[J]. Ocean Engineering, 2017, 146(12):282-297.
[23] Riska K, Leiviskä T, Nyman T, et al. Ice performance of the Swedish multi-purpose icebreaker Tor Viking Ⅱ[C]//16st International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), 2001:849-866.
[1] LI Tian-e, SUN Xiao-ying, WU Yue, WANG Chang-guo. PARAMETER ANALYSIS OF AERODYNAMIC DRAG FORCE IN STRATOSPHERIC AIRSHIP [J]. Engineering Mechanics, 2019, 36(1): 248-256.
[2] TANG Qiong, LI Yi, LU Xin-zheng, YAN Wei-ming. Study on axial compression capacity of multi-spiral hoops confined concrete columns [J]. Engineering Mechanics, 2018, 35(S1): 166-171.
[3] ZHAI Jin-jin, DONG Sheng. Simulation of ALEUTIAN tsunami by NEOWAVES model [J]. Engineering Mechanics, 2018, 35(S1): 359-364.
[4] ZHU Ming-qiao, ZHANG Zi-wei, JIANG Qiao, SHI Wei-hua. Experimental analysis on the force transmission path of a double-deck traffic concrete box girder [J]. Engineering Mechanics, 2018, 35(S1): 181-187.
[5] QIAN Lan-ping, LI Yi, LU Xin-zheng, YAN Wei-ming. Numerical investigation on residual bearing capacity of columns after collision of light weight vehicle [J]. Engineering Mechanics, 2018, 35(S1): 313-319.
[6] WU Zhi-jun, ZHANG Peng-lin, LIU Quan-sheng, LI Wan-feng, JIANG Wei-zhong. DYNAMIC FAILURE ANALYSIS OF REINFORCED CONCRETE SLAB BASED ON COHESIVE ELEMENT UNDER EXPLOSIVE LOAD [J]. Engineering Mechanics, 2018, 35(8): 79-90,110.
[7] SONG Zi-jie, HU Zhi-qiang. AN INTEGRATED ANALYTICAL METHOD TO PREDICT STRUCTURAL DYNAMIC RESPONSES OF SHIP STRUCTURE UNDER COLLISION AND GROUNDING SCENARIOS [J]. Engineering Mechanics, 2018, 35(8): 245-256.
[8] LI Xiao, FANG Qin, KONG Xiang-zhen, WU Hao. SHPB TEST AND NUMERICAL INVESTIGATION ON THE INERTIA EFFECT OF MORTAR MATERIAL [J]. Engineering Mechanics, 2018, 35(7): 187-193.
[9] SHI Chu, LUO Yu, HU Zhi-qiang. NON-LINEAR BURGERS' SEA-ICE MODEL CONGSIDERING DAMAGE EFFECTS AND ITS NUMERICAL APPLICATION [J]. Engineering Mechanics, 2018, 35(7): 249-256.
[10] PAN Xiao-jun, ZHANG Yan-ping, CHEN Xi, GAO Wei, FAN Jian. MATHEMATICAL MODEL AND NUMERICAL SIMULATION OF THIN FILM FLOW ON HORIZONTAL SUBSTRATE [J]. Engineering Mechanics, 2018, 35(6): 24-32,41.
[11] LI Shang-bin, LIN Yong-feng, FAN Feng. THE RESEARCH OF AERODYNAMIC CHARACTERISTICS OF TILT ROTOR USING WIND TUNNEL TEST AND NUMERICAL SIMULATION METHODS [J]. Engineering Mechanics, 2018, 35(6): 249-256.
[12] LIU Ming-ming, LI Hong-nan, FU Xing. EXPERIMENTAL AND NUMERICAL ANALYSIS OF AN INNOVATIVE RE-CENTERING SHAPE MEMORY ALLOYS-SHEARING LEAD DAMPER [J]. Engineering Mechanics, 2018, 35(6): 52-57,67.
[13] TIAN Tian, LEI Yang, QI Fa-lin, LI Guo-qing. VIBRATION RESPONSE TRANSMISSION OF LINING ARCH DUE TO TRAIN SPEED-CHANGING VIBRATION LOAD [J]. Engineering Mechanics, 2018, 35(5): 143-151.
[14] HAN Yan, LI Kai, CHEN Hao, CAI Chun-sheng, DONG Guo-chao. NUMERICAL SIMULATION ON AERODYNAMIC CHARACTERISTICS OF TYPICAL VEHICLES ON BRIDGES AND THE WINDSHIELD EFFECTS BETWEEN VEHICLES [J]. Engineering Mechanics, 2018, 35(4): 124-134,185.
[15] FAN Peng-xuan, CHEN Wu-jun, ZHAO Bing. THEORETICAL AND NUMERICAL ANALYSIS OF COILABLE SPACE MAST IN COILING PROCESS [J]. Engineering Mechanics, 2018, 35(3): 249-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Tian-e, SUN Xiao-ying, WU Yue, WANG Chang-guo. PARAMETER ANALYSIS OF AERODYNAMIC DRAG FORCE IN STRATOSPHERIC AIRSHIP[J]. Engineering Mechanics, 2019, 36(1): 248 -256 .
[2] GUAN Jun-feng, YAO Xian-hua, BAI Wei-feng, CHEN Ji-hao, FU Jin-Wei. DETERMINATION OF FRACTURE TOUGHNESS AND TENSILE STRENGTH OF CONCRETE USING SMALL SPECIMENS[J]. Engineering Mechanics, 2019, 36(1): 70 -79,87 .
[3] GAO Yan-fang, CHEN Mian, LIN Bo-tao, JIN Yan. GENERALIZED EFFECTIVE STRESS LAW FOR MULTI-POROSITY MEDIA UNSATURATED WITH MULTIPHASE FLUIDS[J]. Engineering Mechanics, 2019, 36(1): 32 -43 .
[4] YU Xiao, CHEN Li, FANG Qin. A TESTING METHOD ON THE ATTENUATION OF STRESS WAVES IN LOOSE POROUS MEDIA AND ITS APPLICATION TO CORAL SAND[J]. Engineering Mechanics, 2019, 36(1): 44 -52,69 .
[5] LUO Da-ming, NIU Di-tao, SU Li. RESEARCH PROGRESS ON DURABILITY OF STRESSED CONCRETE UNDER ENVIRONMENTAL ACTIONS[J]. Engineering Mechanics, 2019, 36(1): 1 -14,43 .
[6] YUAN Si, JIANG Kai-feng, XING Qin-yan. A NEW ADAPTIVE FEM FOR MINIMAL SURFACES FORM-FINDING OF MEMBRANE STRUCTURES[J]. Engineering Mechanics, 2019, 36(1): 15 -22 .
[7] GAO Shan, ZHENG Xiang-yuan, HUANG Yi. HYBRID HERMITE MODELS FOR SHORT TERM EXTREMA ESTIMATION OF NON-GAUSSIAN PROCESSES[J]. Engineering Mechanics, 2019, 36(1): 23 -31 .
[8] BAI Lu-shuai, LI Gang, JIN Yong-qiang, LI Hong-nan. A STRUCTURAL STATE IDENTIFICATION METHOD FOR TRUSS STRUCTURES WITH SEPARATED DAMAGE[J]. Engineering Mechanics, 2019, 36(1): 53 -60 .
[9] CUI Zhao-yan, XU Ming, CHEN Zhong-fan, WANG Fei. EXPERIMENTAL STUDY ON BEARING CAPACITY OF BOLTED STEEL-PSB-STEEL CONNECTIONS[J]. Engineering Mechanics, 2019, 36(1): 96 -103,118 .
[10] JIA Bu-yu, YAN Quan-sheng, YU Xiao-lin, YANG Zheng. STABILITY ANALYSIS ON PEDESTRIAN-INDUCED LATERAL VIBRATION OF FOOTBRIDGES CONSIDERING PEDESTRIAN STOCHASTIC EXCITATION[J]. Engineering Mechanics, 2019, 36(1): 155 -164 .