Engineering Mechanics ›› 2018, Vol. 35 ›› Issue (11): 53-67.doi: 10.6052/j.issn.1000-4750.2017.07.0575

Previous Articles     Next Articles

RESEARCH ON ASEISMIC PERFORMANCE OF PRC COUPLING BEAM-HYBRID COUPLED SHEAR WALL SYSTEM

TIAN Jian-bo1, SHI Qing-xuan2, LIU Yun-he3, LI Shen1, MA Hui1   

  1. 1. School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China;
    2. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    3. Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received:2017-07-27 Revised:2018-01-15 Online:2018-11-07 Published:2018-11-07

Abstract: PRC coupling beam-hybrid coupled shear wall system is a new structural system formed by replacing the concrete coupling beam with the plate-reinforced composite (PRC) coupling beam in traditional reinforced concrete coupled shear walls. It is still lack of systematic research on its aseismic behavior. Therefore, based on the aseismic performance study of the PRC coupling beam with a small span-to-depth ratio, the BS basic model specimen of the PRC coupling beam-hybrid coupled shear wall system is designed. The aseismic behavior of the PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software. The stress distribution of steel plates, reinforcing bars in coupling beams and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the influence of a coupling ratio, the section size of a coupling beam, the height-width ratio of a single side wall, the total height of a structure, and the role of a slab on the aseismic behavior of the new structural system is studied. It is recommended that the reasonable coupling ratio for the PRC coupling beam-hybrid coupled shear wall system in a high intensity seismic fortification area is from 40% to 60%.

Key words: plate-reinforced composite coupling beam, hybrid coupled shear wall system, plastic hinge, coupling ratio (CR), seismic behavior

CLC Number: 

  • TU398.2+.2
[1] 史庆轩, 田建勃, 王南, 等. 钢-混凝土组合连梁研究现状及其发展[J]. 建筑结构, 2014, 44(9):1-8. Shi Qingxuan, Tian Jianbo, Wang Nan, et al. Research status and development of the steel-concrete composite coupling beam[J]. Building Structure, 2014, 44(9):1-8. (in Chinese)
[2] Sherif E T, Christopher M K, Mohamed H. Pushover of hybrid coupled walls. I:design and modeling[J]. Journal of Structural Engineering, 2002, 128(10):1272-1281.
[3] Shahrooz B M, Remmetter M E, Qin F. Seismic design and performance of composite coupled walls[J]. Journal of Structural Engineering, 1993, 119(11):3291-3309.
[4] Harries K A, Gong B, Shahrooz B M. Behavior and design of reinforced concrete, steel, and steel-concrete coupling beams[J]. Earthquake Spectra, 2000, 16(4):775-799.
[5] Harries K A, Moulton J D, Clemson R L. Parametric study of coupled wall behavior-implications for the design of coupling beams[J]. Journal of Structural Engineering, 2004, 130(12):480-488.
[6] Morelli F, Manfredi M, Salvatore W. An enhanced component-based model for steel connection in a hybrid coupled shear wall structure:Development, calibration and experimental validation[J]. Computers and Structures, 2016, 176(5):50-69.
[7] Watchara C A, Sutat L, Subhash C G. Performance-based plastic design method for tall hybrid coupled walls[J]. Structural Design of Tall and Special Buildings, 2016, 25(14):681-699.
[8] 石韵, 苏明周, 梅许江, 等. 高耦连比新型混合连肢墙结构滞回性能拟静力试验研究[J]. 土木工程学报, 2013, 46(1):52-60. Shi Yun, Su Mingzhou, Mei Xujiang, et al. Experimental study on hysteretic behavior of innovative hybrid coupled wall system with high coupling ratio[J]. China Civil Engineering Journal, 2013, 46(1):52-60. (in Chinese)
[9] 伍云天, 周忠亮, 肖岩, 等. 钢连梁与钢-混凝土组合剪力墙连接抗震性能研究[J]. 建筑结构学报, 2015, 36(9):9-17, 52. Wu Yuntian, Zhou Zhongliang, Xiao Yan, et al. Experimental study on steel coupling beam and composite shear wall connection under simulated earthquake action[J]. Journal of Building Structures, 2015, 36(9):9-17, 52. (in Chinese)
[10] 晏小欢. 带组合连梁混合双肢剪力墙结构抗震性能实验与设计研究[D]. 长沙:中南大学, 2009. Yan Xiaohuan. Experimental and design study on seismic performance of hybrid coupled shear wall with steel-concrete composite coupling beams[D]. Changsha:Central South University, 2009. (in Chinese)
[11] 周颖, 缪驰, 闫峰, 等. 钢骨混凝土连梁联肢剪力墙抗震性能试验研究及有限元分析[J]. 建筑结构学报, 2015, 36(3):36-45. Zhou Ying, Miao Chi, Yan Feng, et al. Experimental study and FEA of seismic performance of coupled shear walls with steel reinforced concrete coupling beams[J]. Journal of Building Structures, 2015, 36(3):36-45. (in Chinese)
[12] 聂建国, 胡红松. 外包钢板-混凝土组合连梁试验研究I:抗震性能[J]. 建筑结构学报, 2014, 35(5):1-9. Nie Jianguo, Hu Hongsong. Experimental research on concrete filled steel plate composite coupling beams I:seismic behavior[J]. Journal of Building Structures, 2014, 35(5):1-9. (in Chinese)
[13] 纪晓东, 钱稼茹. 震后功能可快速恢复联肢剪力墙研究[J]. 工程力学, 2015, 32(10):1-8. Ji Xiaodong, Qian Jiaru. Study of earthquake-resilient coupled shear walls[J]. Engineering Mechanics, 2015, 32(10):1-8. (in Chinese)
[14] Ji X D, Liu D, Sun Y, et al. Seismic performance assessment of a hybrid coupled wall system with replaceable steel coupling beams versus traditional RC coupling beams[J]. Earthquake Engineering and Structural Dynamics, 2017, 46(4):517-535.
[15] 汪梦甫, 王义俊. 高阻尼混凝土带钢板暗支撑双肢剪力墙抗震性能试验研究[J]. 工程力学, 2017, 34(1):204-212. Wang Mengfu, Wang Yijun. Study on seismic performance of high damping concrete coupled shear walls with concealed steel plate bracings[J]. Engineering Mechanics, 2017, 34(1):204-212. (in Chinese)
[16] 骆欢, 杜轲, 孙景江, 等. 联肢剪力墙非线性分析模型研究及数值模拟验证[J]. 工程力学, 2017, 34(4):140-149, 159. Luo Huan, Du Ke, Sun Jingjiang, et al. Nonlinear analysis model and numerical simulation of coupled wall systems[J]. Engineering Mechanics, 2017, 34(4):140-149, 159. (in Chinese)
[17] 史庆轩, 田建勃, 王秋维, 等. 小跨高比钢板-混凝土组合连梁抗震性能试验研究[J]. 建筑结构学报, 2015, 36(2):104-114. Shi Qingxuan, Tian Jianbo, Wang Qiuwei, et al. Experimental research on seismic behavior of plate-reinforced composite coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2015, 36(2):104-114. (in Chinese)
[18] 田建勃, 史庆轩, 陶毅, 等. 小跨高比钢板-混凝土组合连梁受力与变形性能研究[J]. 建筑结构学报, 2016, 37(12):83-96. Tian Jianbo, Shi Qingxuan, Tao Yi, et al. Research on mechanics and deformation performance of plate-reinforced composite coupling beams with small span-to-depth ratio[J]. Journal of Building Structures, 2016, 37(12):83-96. (in Chinese)
[19] 田建勃, 史庆轩, 王南, 等. 基于软化拉-压杆模型的小跨高比钢板-混凝土组合连梁受剪承载力分析[J]. 工程力学, 2016, 33(5):142-149. Tian Jianbo, Shi Qingxuan, Wang Nan, et al. Shear strength of plate-reinforced composite coupling beams with small span-to-depth ratio using softened strut-and-tie model[J]. Engineering Mechanics, 2016, 33(5):142-149. (in Chinese)
[20] 梁兴文, 史金田, 车佳玲, 等. 混凝土联肢剪力墙结构抗震性能控制方法[J]. 工程力学, 2013, 30(11):207-213. Liang Xingwen, Shi Jintian, Che Jialing, et al. A seismic behavior control method for concrete coupled shear walls[J]. Engineering Mechanics, 2013, 30(11):207-213. (in Chinese)
[21] NZS 3101-1995, Concrete structures standard[S]. New Zealand:The Colour Guy, 2006.
[22] CSA A23.3-04, Design of concrete structures[S]. Canadian:Canadian Standards Association, 2004.
[23] Mohamed H, Sherif E T. Inelastic dynamic behavior of hybrid coupled walls[J]. Journal of Structural Engineering, 2004, 130(2):285-296.
[24] 包世华. 新编高层建筑结构[M]. 第3版. 北京:中国水利水电出版社, 2013:120-140. Bao Shihua. New high-rise building structure[M]. 3rd ed. Beijing:China Water & Power Press, 2013:120-140. (in Chinese)
[25] 伍云天, 李英民, 张祁, 等. 美国组合联肢剪力墙抗震设计方法探讨[J]. 建筑结构学报, 2011, 32(12):137-144. Wu Yuntian, Li Yingmin, Zhang Qi, et al. Seismic design of hybrid coupled walls in United States[J]. Journal of Building Structures, 2011, 32(12):137-144. (in Chinese)
[26] 石韵. 含型钢边缘构件高层混合连肢墙结构的抗震性能及设计方法研究[D]. 陕西:西安建筑科技大学, 2013. Shi Yun. Experimental study on seismic behavior and design criterion of hybrid coupled wall system with steel boundary elements[D]. Shaanxi:Xi'an University of Architecture & Technology, 2013. (in Chinese)
[27] GB 50010-2010, 混凝土结构设计规范(2015年版)[S]. 北京:中国建筑工业出版社, 2015. GB 50010-2010, Code for design of concrete structures (2015 Edition)[S]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[28] GB 50011-2010, 建筑抗震设计规范(2016年版)[S]. 北京:中国建筑工业出版社, 2016. GB 50011-2010, Code for seismic design of buildings (2016 Edition)[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[29] JGJ 3-2010, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2011. JGJ 3-2010, Technical specification for concrete structures of tall building[S]. Beijing:China Architecture & Building Press, 2011. (in Chinese)
[30] Saenz L P. Discussion of equation for the stress-strain curve of concrete by desayi and krishnan[J]. ACI Structural Journal, 1964, 61(9):1229-1235.
[31] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究[J]. 工程力学, 2013, 30(4):59-67, 82. Nie Jianguo, Wang Yuhang. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures[J]. Engineering Mechanics, 2013, 30(4):59-67, 82. (in Chinese)
[32] 王宇航. 曲线梁桥钢管混凝土桥墩的扭转效应研究[D]. 北京:清华大学, 2013. Wang Yuhang. Study on torsion effect in concrete filled steel tube piers of curved girder bridges[D]. Beijing:Tsinghua University, 2013. (in Chinese)
[33] CEB-FIP, Model Code 90[S]. Lausanne:Mai, 1993.
[34] 沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京:清华大学出版社, 1993:50-51. Shen Jumin, Wang Chuanzhi, Jiang Jianjing. Finite element and limit analysis of plate and shell on reinforced concrete[M]. Beijing:Tsinghua University Press, 1993:50-51. (in Chinese)
[35] Hibbitt, Karlsson, Sorensen. ABAQUS/Standard User Subroutines Reference Manual[M]. USA:The Pennsylvania State University, 1998:1-200.
[36] Su R K L, Lam W Y, Pam H J. Behavior of embedded steel plate in composite coupling beams[J]. Journal of Constructional Steel Research, 2008(64):1112-1128.
[37] 黄羽立, 陆新征, 叶列平, 等. 基于多点位移控制的推覆分析算法[J]. 工程力学, 2011, 28(2):18-23. Huang Yuli, Lu Xinzheng, Ye Lieping, et al. A pushover analysis algorithm based on multiple point constraints[J]. Engineering Mechanics, 2011, 28(2):18-23. (in Chinese)
[38] 黄东升, 程文瀼, 彭飞. 对称双肢短肢剪力墙的低周反复荷载试验研究[J]. 建筑结构学报, 2005, 26(3):51-56. Huang Dongsheng, Cheng Wenrang, Peng Fei. Low-cycle loading experiment study on symmetric double short-pier shear walls[J]. Journal of Building Structures, 2005, 26(3):51-56. (in Chinese)
[1] XU Chun-yi, LU Biao, YU Xi. Experimental study on the seismic behavior of masonry wall with fiberglass geogrid [J]. Engineering Mechanics, 2018, 35(S1): 126-133.
[2] ZHANG Wei-jing, ZHANG Chen-cheng. Non-linear analysis of precast RC column with steel bars spliced by compressive sleeves [J]. Engineering Mechanics, 2018, 35(S1): 67-72.
[3] SUN Jian, QIU Hong-xing, TAN Zhi-cheng, JIANG Hong-bo. EXPERIMENTAL STUDY ON I-SHAPED PRECAST REINFORCED CONCRETE SHEAR WALLS USING BOLTED CONNECTIONS [J]. Engineering Mechanics, 2018, 35(8): 172-183,191.
[4] ZHENG Shan-suo, ZHANG Xiao-hui, HUANG Wei-zeng, ZHAO Xu-ran. EXPERIMENTAL RESEARCH AND FINITE ELEMENT ANALYSIS ON THE SEISMIC BEHAVIOR OF CORRODED PLANE STEEL FRAMES UNDER OFFSHORE ATMOSPHERIC ENVIRONMENT [J]. Engineering Mechanics, 2018, 35(7): 62-73,82.
[5] WANG Da-yang, HAN Qi-hao, ZHANG Yong-shan. EXPERIMENTAL AND ANALYTICAL STUDY OF COMPOSITE STEEL PLATE SHEAR WALL WITH ASSEMBLED MULTI-CONCRETE SLAB [J]. Engineering Mechanics, 2018, 35(7): 83-93,138.
[6] ZHANG Chao, XUE Su-duo, WANG Guang-yong, ZHANG Dong-ming. EXPERIMENTAL RESEARCH AND ANALYSIS ON THE POST-FIRE PERFORMANCE OF STEEL REINFORCED CONCRETE FRAME STRUCTURES [J]. Engineering Mechanics, 2018, 35(5): 152-161.
[7] ZHENG Shan-suo, LIU Wei, ZUO He-shan, DONG Li-guo, LI Qiang-qiang. ASEISMIC PERFORMANCE TEST OF RC FRAME BEAMS CONSIDERING CORROSION WITH DIFFERENT SHEAR SPAN RATIO IN THE COASTAL ATMOSPHERE [J]. Engineering Mechanics, 2018, 35(4): 78-86.
[8] CHONG Xun, WAN Jin-liang, JIANG Qing, YE Xian-guo, WANG De-cai, XING Wei, SHAO Hui-bin. EXPERIMENTAL STUDY ON ASEISMIC PERFORMANCE OF SUPERIMPOSED RC WALLS WITH ENHANCED HORIZONTAL JOINTS [J]. Engineering Mechanics, 2018, 35(4): 107-114.
[9] MOU Ben, WANG Ling-ling, ZHANG Chun-wei, LIN Xu-chuan. ASEISMIC PERFORMANCE OF BEAM-TO-COLUMN JOINTS WITH EXTERNAL-DIAPHRAGM CONSIDERING SLAB EFFECT: EXPERIMENTAL INVESTIGATION [J]. Engineering Mechanics, 2018, 35(2): 160-168,213.
[10] CHEN Zong-ping, LIU Xiang, NING Fan. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF REINFORCED CONCRETE CROSS SHAPE COLUMNS UNDER COMPRESSIONFLEXURE-SHEAR-TORSION COMBINED ACTIONS [J]. Engineering Mechanics, 2018, 35(10): 124-134.
[11] ZHENG Shan-suo, LIU Wei, QIN Qing, ZHANG Chuan-chao, DONG Li-guo, LI Qiang-qiang. EXPERIMENTAL RESEARCH ON SEISMIC BEHAVIOR OF RC FRAME BEAMS UNDER DIFFERENT LOADING PROTOCOLS [J]. Engineering Mechanics, 2018, 35(1): 109-117.
[12] XUE Jian-yang, DONG Jin-shuang, SUI Yan, LIU Zu-qiang. RESEARCH ON THE SEISMIC BEHAVIORS OF DUAL LINTEL-COLUMN JOINT IN TRADITIONAL STYLE BUILDINGS WITH VISCOUS DAMPER [J]. Engineering Mechanics, 2018, 35(1): 98-108.
[13] GUO Hong-chao, HAO Bo, LIU Yun-he, SUN Li-jian. EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF STEEL FRAME WITH FABRICATED RECYCLED CONCRETE WALL [J]. Engineering Mechanics, 2018, 35(1): 172-181.
[14] DENG Fu-yuan, JI Xiao-dong, WANG Tao, SHI Wei. CYCLIC TEST ON THE SEISMIC BEHAVIOR OF RC COUPLING BEAMS WITH SLABS [J]. Engineering Mechanics, 2017, 34(增刊): 54-58.
[15] HAN Jian-ping, LIU Wen-lin. EXPERIMENTAL INVESTIGATION ON SEISMIC BEHAVIOR OF PVA FIBER REINFORCED CONCRETE COLUMNS WITH HIGH AXIAL COMPRESSION RATIOS [J]. Engineering Mechanics, 2017, 34(9): 193-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Ying-xiong;;ZHOU Zhi-yang;SHU Shi. ALGEBRAIC MULTIGRID METHODS FOR 3D LINEAR ELASTICITY PROBLEMS ON SOME TYPICAL MESHES[J]. Engineering Mechanics, 2011, 28(6): 11 -018 .
[2] JU Wei;CEN Song;FU Xiang-rong;LONG Yu-qiu. ANALYSIS OF BOUNDARY EFFECT PHENOMENON IN THICK PLATES USING HAMILTONIAN APPROACH[J]. Engineering Mechanics, 2008, 25(2): 0 -008 .
[3] LIU Chun-mei, XIAO Ying-xiong, SHU Shi, ZHONG Liu-qiang. ADAPTIVE FINITE ELEMENT METHOD AND LOCAL MULTIGRID METHOD FOR ELASTICITY PROBLEMS[J]. Engineering Mechanics, 2012, 29(9): 60 -67,91 .
[4] CHENG Yong-feng, ZHU Zhao-qing, LU Zhi-cheng, ZHANG Fu-you. THE DYNAMIC RESPONSE OF A SIMPLY SUPPORTED VISCOUSLY DAMPED BEAM SYSTEM UNDER A MOVING HARMONIC OSCILLATOR[J]. Engineering Mechanics, 2018, 35(7): 18 -23 .
[5] . STUDY ON EXPERIMENTAL METHODOLOGY OF EQUIPMENT–STRUCTURE–SOIL INTERACTION SYSTEM UTILIZING SHAKING TABLE REAL-TIME SUBSTRUCTURE EXPERIMENT[J]. Engineering Mechanics, 0, (): 0 .
[6] YUAN Quan, YUAN Si, LI Yi, YAN Wei-ming, XING Qin-yan. PROOF OF ADAPTIVE TIME-STEP SIZE FORMULA BASED ON MAXIMUM NORM IN TIME INTEGRATION OF LINEAR ELEMENTS[J]. Engineering Mechanics, 2018, 35(8): 9 -13 .
[7] WANG Zhen, LI Qiang, WU Bin. ADAPTIVE DELAY COMPENSATION METHOD FOR REAL-TIME HYBRID TESTING[J]. Engineering Mechanics, 2018, 35(9): 37 -43 .
[8] DING Jie, ZOU Yun, CAI Xin, LI Tian-qi, ZHENG Li-jun, ZHAO Tao-gan. Experimental study on exterior joint of damage control steel frame[J]. Engineering Mechanics, 2018, 35(S1): 107 -112 .
[9] PAN Tian-lin, WU Bin. AN ENERGY CONSISTENT INTEGRATION METHOD FOR TRUSS ELEMENTS[J]. Engineering Mechanics, 2018, 35(10): 1 -9,36 .
[10] ZHENG Xin, LIU Yu-bin, CHEN Pu, SHEN Feng, ZHANG Sheng-jun, FU Xiang-rong. Two-dimensional wing flutter frequency calculation method based on bending torsion coupling theory[J]. Engineering Mechanics, 2018, 35(S1): 1 -5,12 .