Engineering Mechanics ›› 2018, Vol. 35 ›› Issue (10): 47-55.doi: 10.6052/j.issn.1000-4750.2017.06.0453

Previous Articles     Next Articles

SEMI ACTIVE NONLINEAR ROBUST DECENTRALIZED CONTROL BASED ON GUARANTEED PERFORMANCE ADAPTIVE RBF NEURAL NETWORK

PAN Zhao-dong1, TAN Ping2, ZHOU Fu-lin2,3   

  1. 1. Department Civil Engineering, Dongguan University of Technology, Dongguan 523808, China;
    2. Earthquake Engineering Research & Test Center, Guangzhou University, Guangzhou 510405, China;
    3. College of Civil Engineering, Hunan University, Changsha 410082, China
  • Received:2017-06-10 Revised:2018-04-04 Online:2018-10-12 Published:2018-10-12

Abstract: The semi active decentralized control of nonlinear structures with uncertain parameters is studied. Firstly, the degenerated Bouc-Wen hysteretic model is utilized to simulate the restoring forces, and the error state equation of a sub-control system is established by considering the uncertainty of the model parameters (mass, stiffness and damping) and the coupling between subsystems. Secondly, a sub-controller is designed which composes of a guaranteed cost control term and an adaptive approximation control term. The guaranteed cost control term is obtained by solving the guaranteed cost control problem which is transformed into a linear matrix inequality. The approximation control term is determined by the adaptive control law of RBF neural network, and its stability and boundedness of the weights are proved by Lyapunov stability theory. And then a guaranteed cost adaptive RBF neural network robust decentralized control (GCARBF) algorithm for nonlinear vibration control of uncertain structures is established. A nonlinear 8-story building is selected as a numerical example to evaluate the control performances of the proposed algorithm. The MR semi active decentralized control design and the simulation analysis of 0.3 g~0.8 g intensity are carried out. Numerical simulation results indicate the effectiveness and superiority of the proposed algorithm.

Key words: MR semi-active control, robust decentralized control, adaptive RBF neural network control, guaranteed cost control, Lyapunov stability theory, linear matrix inequality method

CLC Number: 

  • TU352.1+1
[1] 席裕庚. 动态大系统方法导论[M]. 北京:国防工业出版社, 1988:3-5. Xi Yugeng. Introduction of large scale dynamic systems[M]. Beijing:National Defense of Industry Press, 1988:3-5. (in Chinese)
[2] Lynch J P, Law K H. Decentralized control techniques for large-scale civil structural systems[C]//Proc. of the 20th Int. Modal Analysis Conference (IMAC XX). Los Angeles. Bellingham:Society of Photo-Optical Instrumentation Engineers, 2002.
[3] Xu B, Wu Z S, Yokoyama K. Neural networks for decentralized control of cable-stayed bridge[J]. Journal of Bridge Engineering, 2003, 8(4):229-236.
[4] Rofooei F R, Monajemi-Nezhad S. Decentralized control of tall buildings[J]. The Structural Design of Tall and Special Buildings, 2006, 15(2):153-170.
[5] Monajemi -Nezhad S, Rofooei F R. Decentralized sliding mode control of multistory buildings[J]. The Structural Design of Tall and Special Buildings, 2007, 16(2):181-204.
[6] Loh C H, Chang C M. Application of centralized and decentralized control to building structure:analytical study[J]. Journal of Engineering Mechanics, 2008, 134(11):970-982.
[7] 李宏男, 李瀛, 李钢. 地震作用下建筑结构的分散控制研究[J]. 土木工程学报, 2008, 41(9):27-33. Li Hongnan, Li Ying, Li Gang. Decentralized control of structures under earthquakes[J]. China Civil Engineering Journal, 2008, 41(9):27-33. (in Chinese)
[8] Wang Y. Wireless sensing and decentralized control for civil structures:theory and implementation[D]. Stanford, California:Stanford University, 2007.
[9] Wang Y, Lynch J P, Law K H. Decentralized H controller design for large-scale civil structures[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3):377-401.
[10] 蒋扬, 周星德, 王玉. 建筑结构鲁棒分散控制方法研究[J]. 振动与冲击, 2012, 31(6):37-41. Jang Yang, Zhou Xingde, Wang Yu. A robust decentranzed control method for architectural structures[J]. Journal of Vibration and Shock, 2012, 31(6):37-41. (in Chinese)
[11] 雷鹰, 伍德挺, 刘中华. 一种适用于大型工程结构的分散振动控制方法[J]. 振动工程学报, 2012, 25(4):411-417. Lei Ying, Wu Deting, Liu Zhonghua. A decentralized vibration control algorithm for large-scale engineering structures[J]. Journal of Vibration Engineering, 2012, 25(4):411-417. (in Chinese)
[12] 汪权, 王建国, 裴阳阳. 地震作用下高层建筑结构的分散模糊迭代学习控制研究[J]. 计算力学学报, 2012, 29(5):681-686. Wang Quan, Wang Jianguo, Pei Yangyang. Decentralized fuzzy iterative learning control of tall buildings under earthquakes[J]. Chinese Journal of Computational Mechanics, 2012, 29(5):681-686. (in Chinese)
[13] 潘兆东, 谭平, 周福霖. 大型结构小增益分散稳定化容错控制研究[J]. 工程力学, 2017, 34(6):128-136. Pan Zhaodong, Tan Ping, Zhou Fulin. Decentralized stable fault-tolerant control for large-scale structure[J]. Engineering Mechanics, 2017, 34(6):128-136. (in Chinese)
[14] Yu Y, Li L, Leng X, et al. A wireless decentralized control experimental platform for vibration control of civil structures[J]. Smart Structures and Systems, 2017, 19(1):47-56.
[15] Ma T W, Xu N S, Tang Y. Decentralized robust control of building structures under seismic excitations[J]. Earthquake Engineering & Structural Dynamics, 2008, 37(1):121-140.
[16] 孙万泉, 李庆斌. 基于LMI的高层建筑结构分散H2/H鲁棒控制[J]. 地震工程与工程振动, 2007, 27(6):218-222. Sun Wanquan, Li Qingbin. Decentralized H2/H robust control for large-scale building structure based on linear-matrix inequalities (LMI)[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(6):218-222. (in Chinese)
[17] Li H, Wang J, Song G, et al. An input-to-state stabilizing control approach for non-linear structures under strong ground motions[J]. Structural Control & Health Monitoring, 2011, 18(2):227-240.
[18] 潘兆东, 谭平, 周福霖. 大型结构分散控制系统的优化研究[J]. 工程力学, 2017, 34(1):154-162. Pan Zhaodong, Tan Ping, Zhou Fulin. Study on optimization of large-scale structural decentralized control[J]. Engineering Mechanics, 2017, 34(1):154-162. (in Chinese)
[19] Baber T T, Wen Y K. Random vibration hysteretic, degrading systems[J]. Journal of the Engineering Mechanics Division, 1981, 107(6):1069-1087.
[20] 刘金琨. 智能控制[M]. 第3版. 北京:电子工业出版社, 2014:132-133. Liu Jinkun. Intelligent control[M]. 3rd ed. Beijing:Electronics Industry Press, 2014:132-133. (in Chinese)
[21] 俞立. 鲁棒控制:线性矩阵不等式处理方法[M]. 北京:淸华大学出版社, 2002:8-9, 87-88. Yu Li. Robust control:linear matrix inequality approach[M]. Beijing:Tsinghua University Press, 2002:8-9, 87-88. (in Chinese)
[22] Yang J N, Wu J C, Agrawal A K. Sliding mode control for nonlinear and hysteretic structures[J]. Journal of Engineering Mechanics, 1995, 121(12):1330-1339.
[23] Dyke S J. Acceleration feedback control strategies for active and semi-active control systems:modeling, algorithm development and experimental verification[D]. USA:Dissertation of University of Notre Dame, 1996:175-186.
[24] Yi F, Dyke S J, Caicedo J M, et al. Experimental verification of multi-input seismic control strategies for smart dampers[J]. Journal of Engineering Mechanics, 2001, 27(11):1152-1164.
[1] PAN Zhao-dong, TAN Ping, ZHOU Fu-lin. OUTPUT FEEDBACK H GUARANTEED COST ROBUST DECENTRALIZED CONTROL FOR BUILDING STRUCTURE WITH UNCERTAIN PARAMETERS [J]. Engineering Mechanics, 2018, 35(4): 160-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!