Engineering Mechanics ›› 2018, Vol. 35 ›› Issue (6): 132-143.doi: 10.6052/j.issn.1000-4750.2017.02.0156

Previous Articles     Next Articles

STUDY ON NONLINEAR CHARACTERISTICS AND MECHANICAL MODEL OF HYBRID NONLINEAR VISCOLEASTIC DAMPER

ZHOU Ying, GONG Shun-ming   

  1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-02-27 Revised:2017-06-08 Online:2018-06-25 Published:2018-07-11

Abstract: With the continuous development of viscoelastic material, new types of viscoelastic dampers with improved dissipating performance and deformation performance have been put forward. But inevitably, they also loses linear characteristics at the same time. This paper introduces one type of hybrid nonlinear viscoelastic damper, and explores the characteristics of its nonlinearity. Then an accurate mechanical model, which considers its nonlinearity, is proposed and verified. The results indicate that there are five sources of nonlinearity, including the nonlinearity of phase difference which induces shape change of hysteretic curve, initial stiffness caused by large strain rate during the first loading, softening caused by temperature rise and fatigue performance, softening and hardening under large strain amplitude. The mathematical expression of the proposed mechanical model is concise with less parameters need to be identified. It can present a lot of nonlinear factors and features, such as heating-fatigue softening, ambient temperature dependency, softening and hardening under large strain. Therefore, the parameters are not need to be identified respectively under various cases. The hysteretic loops defined by the model agree well with the testing ones, so the model can simulate the nonlinear behavior of the hybrid nonlinear viscoelastic damper.

Key words: energy dissipation, viscoelastic damper, hybrid nonlinearity, softening, hardening, temperature rise, fatigue performance, mechanical model

CLC Number: 

  • TU352.1+1
[1] Rijnen M, Pasteuning F, Fey R, et al. A numerical and experimental study on viscoelastic damping of a 3D structure[J]. Journal of Sound and Vibration, 2015, 349:80-98.
[2] 李创第, 李暾, 葛新广, 等. 一般线性粘弹性阻尼器耗能结构瞬态响应的非正交振型叠加精确解[J]. 工程力学, 2015, 32(11):140-149. Li Chuangdi, Li Tun, Ge Xinguang, et al. Exact non-orthogonal modal superposition solutions of transient response of MDOF dissipation structures with general linear viscoelastic dampers[J]. Engineering Mechanics, 2015, 32(11):140-149. (in Chinese)
[3] 卢德辉, 周云, 邓雪松, 等. 钢管铅阻尼器构造优化及模拟分析[J]. 工程力学, 2017, 34(3):76-83. Lu Dehui, Zhou Yun, Deng Xuesong, et al. Optimization of configuration and finite element modeling for lead-filled steel tube dampers[J]. Engineering Mechanics, 2017, 34(3):76-83. (in Chinese)
[4] 丁幼亮, 耿方方, 葛文浩, 等. 多塔斜拉桥风致抖振响应的粘滞阻尼器控制研究[J]. 工程力学, 2015, 32(4):130-137. Ding Youliang, Gen Fangfang, Ge Wenhao, et al. Control of wind-induced buffeting responses of a multi-tower cable-stayed bridge using viscous dampers[J]. Engineering Mechanics, 2015, 32(4):130-137. (in Chinese)
[5] Mahmoodi P, Robertson L E, Yontar M, et al. Performance of viscoelastic dampers in world trade center towers[C]//Dynamics of Structures, American Society of Cilil Engineering, New York, USA 1987:632-644.
[6] Crosby P, Kelly J, Singh J P. Utilizing visco-elastic dampers in the seismic retrofit of a thirteen story steel framed building[C]//Structures Congress XⅡ. American Society of Cilil Engineering, New York, USA 1994, 1286-1291.
[7] 程文瀼, 隋杰英, 陈月明. 宿迁市交通大厦采用粘弹性阻尼器的减震设计与研究[J]. 建筑结构学报, 2000, 21(3):30-35. Cheng Wenrang, Sui Jieying, Chen Yueming, et al. Design and study on earthquake absorption using viscoelastic damper in transportation building of Suqian city[J]. Journal of Building Structures, 2000, 21(3):30-35. (in Chinese)
[8] 徐赵东, 史春芳. 黏弹性阻尼器的试验研究与减震工程实例[J]. 土木工程学报, 2009, 42(6):55-60. Xu Zhaodong, Shi Chunfang. Experimental study of viscoelastic dampers for mitigation of earthquake effects[J]. China Civil Engineering Journal, 2009, 42(6):55-60. (in Chinese)
[9] 常业军, 程文瀼, 隋杰英, 等. 钢筋混凝土框-剪结构采用粘弹性阻尼器的减震设计[J]. 东南大学学报(自然科学版), 2002, 32(5):733-736. Chang Yejun, Cheng Wenrang, Sui Jieying, at al. Seismic design of RC frame-shear structure using viscoelastic dampers[J]. Journal of Southeast University (Natural Science Edition), 2002, 32(5):733-736. (in Chinese)
[10] Kim J, Ryu J, Chung L. Seismic performance of structures connected by viscoelastic dampers[J]. Engineering Structures, 2006, 28(2):183-195.
[11] Ahn S K, Min K W, Park J H, et al. Practical issues and solutions on installation of viscoelastic dampers in a 46-story reinforced concrete building structure[J]. The Structural Design of Tall and Special Buildings, 2008, 17(1):231-243.
[12] Saidi I, Gad E F, Wilson J L, et al. Development of passive viscoelastic damper to attenuate excessive floor vibrations[J]. Engineering Structures, 2011, 33(12):3317-3328.
[13] 吴从晓, 赖伟山, 周云, 等. 新型预制装配式消能减震混凝土框架节点抗震性能试验研究[J]. 土木工程学报, 2015, 48(9):23-30. Wu Congxiao, Lai Weishan, Zhou Yun, et al. Experimental study on seismic behaviors of new energy-dissipative prefabricated concrete frame structure joints[J]. China Civil Engineering Journal, 2015, 48(9):23-30. (in Chinese)
[14] 高永林, 陶忠, 叶燎原, 等. 传统穿斗木结构榫卯节点附加黏弹性阻尼器振动台试验[J]. 土木工程学报, 2016, 49(2):59-68. Gao Yonglin, Tao Zhong, Ye Liaoyuan, et al. Shaking table tests of mortise-tenon joints of a traditional Chuan-Dou wood structure attached with viscoelastic dampers[J]. China Civil Engineering Journal, 2016, 49(2):59-68. (in Chinese)
[15] Molinera E, Muserosb P, Martínez-Rodrigoa M D. Retrofit of existing railway bridge of short to medium spans for high-speed traffic using viscoelastic dampers[J]. Engineering Structures, 2012, 40:519-528.
[16] 吴从晓, 周云, 邓雪松. 钢铅粘弹性阻尼器试验研究[J]. 工程力学, 2012, 29(3):150-155. Wu Congxiao, Zhou Yun, Deng Xuesong. Experimental study on steel-lead viscoelastic damper[J]. Engineering Mechanics, 2012, 29(3):150-155. (in Chinese)
[17] 周云, 吴从晓, 邓雪松. 铅粘弹性阻尼器的开发, 研究与应用[J]. 工程力学, 2009, 26(增刊2):80-90. Zhou Yun, Wu Congxiao, Deng Xuesong. Development, research and application of lead viscoelastic damper[J]. Engineering Mechanics, 2009, 26(Suppl 2):80-90. (in Chinese)
[18] Lai M L, Lunsford D A, Kasai K, et al. Viscoelastic damper:A damper with linear or nonlinear material?[C]//Eleventh World Conforence on Earthquake Engineering, Pergamon, har/com Editon, 1996:No. 795.
[19] Chang K C, Soong T T, Oh S T, et al. Effect of ambient temperature on viscoelastically damped structure[J]. Journal of Structural Engineering, 1992, 118(7):1955-1973.
[20] Chang K C, Soong T T, Lai M L, et al. Seismic behavior of steel frame with added viscoelastic dampers[J]. Journal of Structural Engineering, 1995, 121(10):1418-1425.
[21] Lai M L, Chang K C, Soong T T, et al. Full-scale viscoelastically damped steel frame[J]. Journal of Structural Engineering, 1995, 121(10):1443-1447.
[22] Aiken I D, Nims D K, Whittaker A S, et al. Testing of passive energy dissipation systems[J]. Earthquake Spectra, 1993, 9(3):335-370.
[23] 吴波, 郭安薪. 粘弹性阻尼器的性能研究[J]. 地震工程与工程振动, 1998, 18(2):108-116. Wu Bo, Guo Anxin. Research on the performance of viscoelastic dampers[J]. Journal of Earthquake Engineering and Engineering Vibration, 1998, 18(2):108-116. (in Chinese)
[24] 欧进萍, 邹向阳. 粘弹性耗能器的性能试验研究[J]. 振动与冲击, 1999, 18(3):12-18. Ou Jinping, Zou Xiangyang. Experimental study on properties of viscoelastic damper[J]. Journal of Vibration and Shock, 1999, 18(3):12-18. (in Chinese)
[25] 周云, 徐赵东, 邓雪松. 粘弹性阻尼器的性能试验研究[J]. 振动与冲击, 2001, 20(3):71-75. Zhou Yun, Xu Zhaodong, Deng Xuesong. Experimental study on properties of viscoelastic damper[J]. Journal of Vibration and Shock, 2001, 20(3):71-75. (in Chinese)
[26] 徐赵东, 赵鸿铁, 沈亚鹏. 粘弹性阻尼结构的振动台试验[J]. 建筑结构学报, 2001, 22(5):6-10. Xu Zhaodong, Zhao Hongtie, Shen Yapeng. Shaking table test of structure added with viscoelastic dampers[J]. Journal of Building Structures, 2001, 22(5):6-10. (in Chinese)
[27] 许俊红, 李爱群. 黏弹性阻尼墙减震钢框架结构振动台试验研究[J]. 建筑结构学报, 2015, 36(12):19-26. Xu Junhong, Li Aiqun. Shaking table test of steel frame with added viscoelastic damping wall[J]. Journal of Building Structures, 2015, 36(12):19-26. (in Chinese)
[28] 赵刚, 潘鹏, 钱稼茹, 等. 黏弹性阻尼器大变形性能试验研究[J]. 建筑结构学报, 2012, 33(10):126-133. Zhao Gang, Pan Peng, Qian Jiaru, et al. Experimental study of viscoelastic dampers subjected to large deformation[J]. Journal of Building Structures, 2012, 33(10):126-133. (in Chinese)
[29] Dall'asta A, Ragni L. Experimental tests and analytical model of high damping rubber dissipating devices[J]. Engineering Structures, 2006, 28(13):1874-1884.
[30] 周颖, 李锐, 吕西林. 粘弹性阻尼器性能试验研究及参数识别[J]. 结构工程师, 2013, 29(1):83-91. Zhou Ying, Li Rui, Lu Xilin. Experimental study and parameter identification of viscoelastic dampers[J]. Structural Engineer, 2013, 29(1):83-91. (in Chinese)
[31] 周云, 松本達治, 田中和宏, 等. 新型高阻尼黏弹性阻尼器性能试验研究[J]. 工程力学, 2016, 33(7):92-99. Zhou Yun, Matsumoto Tatsuji, Tanaka Kazuhiro, et al. Research on experimental properties of novel high damping viscoelastic dampers[J]. Engineering Mechanics, 2016, 33(7):92-99. (in Chinses)
[32] 周颖, 龚顺明, 吕西林. 带黏弹性阻尼器钢结构振动台试验研究[J]. 建筑结构学报, 2014, 35(7):1-10. Zhou Ying, Gong Shunming, Lu Xilin. Study on shaking table test of a steel structure with additional viscoelastic dampers[J]. Journal of Building Structures, 2014, 35(7):1-10. (in Chinese)
[33] JG/T 209-2012, 建筑消能阻尼器[S]. 北京:中国标准出版社, 2012. JG/T 209-2012, Dampers for vibration energy dissipation of buildings[S]. Beijing:China Standard Press, 2012. (in Chinese)
[34] JGJ 297-2013, 建筑消能减震技术规程[S]. 北京:中国建筑工业出版社, 2013. JGJ 297-2013, Technical specification for seismic energy dissipation of buildings[S]. Beijing:China Architecture Industry Press, 2013. (in Chinese)
[35] 周颖, 龚顺明, 吕西林. 黏弹性阻尼器滞回曲线及特征参数的相似准则[J]. 中南大学学报(自然科学版), 2014, 45(12):4317-4324. Zhou Ying, Gong Shunming, Lu Xilin. Similarity of hysteretic loops and characteristic parameters of viscoelastic dampers[J]. Journal of Central South University (Science and Technology), 2014, 45(12):4317-4324. (in Chinese)
[36] Tsai C S. Temperature Effect of viscoelastic dampers during earthquakes[J]. Journal of Structural Engineering, 1994, 120(2):394-409.
[37] Mullins L. Softening of rubber by deformation[J]. Rubber Chemistry and Technology, 1969, 42(1):339-362.
[38] Diani J, Fayolle B, Gilormini P. A review on the Mullins effect[J]. European Polymer Journal, 2009, 45(3):601-612.
[39] 龚顺明, 周颖, 吕西林. 带黏弹性阻尼器结构振动台试验数值模拟[J]. 工程力学, 2015, 32(增刊):226-232. Gong Shunming, Zhou Ying, Lu Xilin. Numerical simulation of shaking table test on structure added with viscoelastic dampers[J]. Engineering Mechanics, 2015, 32(Suppl):226-232. (in Chinese)
[40] 周云, 松本達治, 田中和宏, 等. 高阻尼黏弹性阻尼器性能与力学模型研究[J]. 振动与冲击, 2015, 34(7):1-7. Zhou Yun, Matsumoto Tatsuji, Tanaka Kazuhiro, et al. Performance and mechanical model of high damping viscoelastic dampers[J]. Journal of Vibration and Shock, 2015, 34(7):1-7. (in Chinese)
[1] ZHOU Ying, WU Hao, GU An-qi. EARTHQUAKE ENGINEERING: FROM EARTHQUAKE RESISTANCE, ENERGY DISSIPATION, AND ISOLATION, TO RESILIENCE [J]. Engineering Mechanics, 2019, 36(6): 1-12.
[2] WANG Bao-shun, YAN Wei-ming, HE Hao-xiang, XU Wei-bing. MECHANICAL MODEL AND PARAMETER ANALYSIS OF PARTICLE DAMPER WITH CONSIDERING FRICTION EFFECT [J]. Engineering Mechanics, 2019, 36(6): 109-118.
[3] XU Long-he, SUN Yu-sheng, YAO Shi-qian, LI Zhong-xian. RESTORING FORCE MODEL AND EXPERIMENTAL VERIFICATION OF AN ASSEMBLED SELF-CENTERING ENERGY DISSIPATION BRACE [J]. Engineering Mechanics, 2019, 36(6): 119-127,146.
[4] HUANG Zhou, LI Hong-nan, FU Xing. OPTIMUM DESIGN OF A RE-CENTERING DEFORMATION-AMPLIFIED SMA DAMPER [J]. Engineering Mechanics, 2019, 36(6): 202-210.
[5] XU Long-he, WU Hu. SEISMIC PERFORMANCE STUDY ALONG THE TRANSVERSE DIRECTION OF CABLE-STAYED BRIDGES WITH SELF-CENTERING ENERGY DISSIPATION BRACES [J]. Engineering Mechanics, 2019, 36(4): 177-187.
[6] ZHU Ya-ning, LIN Kai-qi, JIANG Qing, LIN Yuan-qing, YANG Qing-shun, LU Xin-zheng. DESIGN AND EXPERIMENTAL STUDY OF A SACRIFICIAL-ENERGY DISSIPATION OUTRIGGER [J]. Engineering Mechanics, 2019, 36(2): 104-113.
[7] CHEN Yun, CHEN Chao, JIANG Huan-jun, WAN Zhi-wei, LIU Tao. EXPERIMENT ANALYSIS OF MECHANICAL PROPERTIES OF O-SHAPED STEEL PLATES AND HIGH DAMPING VISCOELASTIC COMPOSITE ENERGY DISSIPATORS [J]. Engineering Mechanics, 2019, 36(1): 119-128.
[8] YANG Lu, WEI Xuan, SHI Gang, XIAO Shi-yong. EXPERIMENT ON ENERGY DISSIPATION PERFORMANCE OF LY315 STEEL BUCKLING-RESTRAINED BRACES [J]. Engineering Mechanics, 2019, 36(1): 200-206.
[9] JIANG Zhi-lin, ZHAO Jun-hai, LÜ Mei-tong, ZHANG Lei. Unified solution of limit internal pressure for double-layered thick-walled cylinder based on bilinear hardening model [J]. Engineering Mechanics, 2018, 35(S1): 6-12.
[10] HE Qun, CHEN Yi-yi, TIAN Hai. Hysteretic behavior of low yield point steel LYP100 under large inelastic strain [J]. Engineering Mechanics, 2018, 35(S1): 27-33.
[11] WEN Ke-wei, LIU Shu-ya, YANG Hong-po. Three-dimensional numerical simulation analysis of the influence of pit excavation based on hardening soilsmall strain model for metro tunnel [J]. Engineering Mechanics, 2018, 35(S1): 80-87.
[12] GUAN Shao-yu, BAI Yong-tao. Stability analysis of tunnel structures based on the twin-shear unified strength theory with strain-softening effect [J]. Engineering Mechanics, 2018, 35(S1): 205-211.
[13] YANG Zhi-jian, LEI Yue-qiang, TAN Ya-wen, LI Guo-chang, WANG Jing-ming. Mechanical performance of improved PHC pile-to-pile cap connection [J]. Engineering Mechanics, 2018, 35(S1): 223-229.
[14] ZHANG Lu-chen, WANG Yu-jie, LUO Shao-ze. Study on votex area fluctuating pressure properties of energy dissipation by hydraulic jump with jet clusters [J]. Engineering Mechanics, 2018, 35(S1): 355-358.
[15] QI Xin, XU Hu, YU Zhi-xiang, ZHAO Lei, MENG Qing-cheng. DYNAMIC MECHANICAL PROPERTY STUDY OF BREAK RINGS IN FLEXIBLE PROTECTIVE SYSTEM [J]. Engineering Mechanics, 2018, 35(9): 188-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!