工程力学 ›› 2019, Vol. 36 ›› Issue (6): 36-48.doi: 10.6052/j.issn.1000-4750.2018.03.0145

• 土木工程学科 • 上一篇    下一篇

基于分块组合法的多孔板塑性极限状态分析

叶冬晨, 陈以一   

  1. 同济大学土木工程学院, 上海 200092
  • 收稿日期:2018-03-13 修回日期:2019-02-28 出版日期:2019-06-25 发布日期:2019-05-31
  • 通讯作者: 叶冬晨(1992-),男,上海人,博士生,主要从事钢结构方面研究(E-mail:ydc1111@tongji.edu.cn). E-mail:ydc1111@tongji.edu.cn
  • 作者简介:陈以一(1955-),男,浙江天台人,教授,工学博士,博导,主要从事钢结构方面研究(E-mail:yiyichen@tongji.edu.cn).

PLASTIC LIMIT STATE ANALYSIS OF BENDING PERFORATED PLATES BASED ON SEGMENTATION METHOD

YE Dong-chen, CHEN Yi-yi   

  1. College of Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2018-03-13 Revised:2019-02-28 Online:2019-06-25 Published:2019-05-31

摘要: 由于装配式建筑和单边螺栓的快速发展,端板连接节点在结构中得到了广泛应用。这类节点承载能力的计算主要是基于塑性铰线理论,该理论依赖于屈服模式的假定。然而对同一节点而言,可能的屈服模式较多,且屈服模式易受到节点尺寸、构造等因素的影响,使其难以适用于不同的节点。因此应用该理论时计算过程繁琐。该文提出了分块组合法,为端板连接受拉区承载能力的计算提供了一种较为便捷、通用的方法。主要思想是将多孔板件(柱壁、端板等)划分成若干块矩形单孔板,分别计算每一块单孔板的屈服承载力,最后组合叠加得到整块板件的屈服承载力。通过该方法计算屈服承载力时,可降低对板件屈服模式的依赖,并且能够得到准确计算结果。板件承载力的计算考虑了开孔板尺寸,边界条件,孔径大小,孔的位置等因素的影响,通过有限元模型和已有的相关试验验证了该方法的准确性与可靠性。

关键词: 端板连接节点, 受弯屈服承载力, 塑性铰线理论, 分块组合法, 开孔板

Abstract: Due to the rapid development of the prefabricated construction and one-side bolts, end-plate connections are more widely used in steel structures. The strength of this kind of connections is calculated based on the yield line theory which depends on the assumption of a yield pattern. For a specific end-plate connection, there are several different yield patterns and they may not be reused in other connections since the yield patterns are sensitive to the joint size and configuration. Therefore, the application of this theory is complicated. An easy and general method called the segmentation method is proposed in this paper to calculate the yield load of the tension zone in an end-plate connection. The main idea of this method is to divide the perforated plate (the column wall and end-plates, etc.) into several rectangular plates with a single hole, calculate the yield load of each divided plate, and then add up them to obtain the yield load of the entire perforated plate. This method can eliminate the dependency on a specific yield pattern without reducing the accuracy. The yield load calculation considers the influence of the plate size, boundary conditions and the bolt-hole diameter and position. The accuracy and reliability of the method are verified by finite element (FE) analyses and existing test results.

Key words: end-plate connections, flexural strength, yield line theory, segmentation method, perforated plate

中图分类号: 

  • TU392.4
[1] 郝际平, 孙晓岭, 薛强, 等. 绿色装配式钢结构建筑体系研究与应用[J]. 工程力学, 2017, 34(1):1-13. Hao Jiping, Sun Xiaoling, Xue Qiang, et al. Research and applications of prefabricated steel structure building systems[J]. Engineering Mechanics, 2017, 34(1):1-13. (in Chinese)
[2] 杨俊芬, 陈雷, 程锦鹏, 等. 一种新型装配式梁柱节点抗震性能试验研究[J]. 工程力学, 2017, 34(12):75-86. Yang Junfen, Chen Lei, Cheng Jinpeng, et al, Experimental study on seismic behavior of a new type of fully assembled beam-column joints[J]. Engineering Mechanics, 2017, 34(12):75-86. (in Chinese)
[3] Wang J, Uy B, That H T, et al. Behaviour and design of demountable beam-to-column composite bolted joints with extended end-plates[J]. Journal of Constructional Steel Research, 2018, 144:221-235.
[4] 石永久, 王萌, 王元清, 等. 钢框架端板连接半刚性节点受力性能分析[J]. 工程力学, 2011, 28(9):51-58. Shi YongJiu, Wang Meng, Wang Qingyuan, et al. Aanlysis on the behavior of steel frame[J]. Engineering Mechanics, 2011, 28(9):51-58. (in Chinese)
[5] 胡方鑫, 施刚, 石永久, 等. 工厂加工制作的特殊构造梁柱节点抗震性能有限元分析[J]. 工程力学, 2015, 32(6):69-75. Hu Fangxin, Shi Gang, Shi Yongjiu, et al. Finite element analysis on seismic performance of specifically pre-fabricated beam-column connections[J]. Engineering Mechanics, 2015, 32(6):69-75. (in Chinese)
[6] Beena K, Naveen K, Shruti S. Experimental and numerical investigations of bolted CFST beams-CFST columns connections[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2018:1-14.
[7] Yin H, Shi G. Finite element analysis on the seismic behavior of fully prefabricated steel frames[J]. Engineering Structures, 2018, 173:28-51.
[8] 王萌, 柯小刚, 吴照章. 可更换延性耗能连接组件的钢框架节点抗震性能研究[J]. 工程力学, 2018, 35(12):151-163. Wang Meng, Ke Xiaogang, Wu Zhaozhang. Seismic behavior of steel frame connections with replaceable high ductility and energy dissipation components[J]. Engineering Mechanics, 2018, 35(12):151-163. (in Chinese)
[9] Park R, Gamble W L. Reinforced concrete slabs[M]. Canada:John Wiley & Sons, 2000.
[10] prEN 1993-1-8:2005, Eurocode 3:design of steel structures:part 1-8:design of joints[S]. Brussels, Belgium:CEN, 2005.
[11] Gomes F, Jaspsrt J-P, Maquoi R. Moment capacity of beam-to-column minor-axis joints[C]//Istanbul, Turkey:IABSE, 1996:319-326.
[12] Tagawa H, Liu Y. Stiffening of bolted end-plate connections with steel member assemblies[J]. Journal of Constructional Steel Research, 2014, 103:190-199.
[13] 徐婷, 王伟, 陈以一. 国外单边螺栓研究现状[J]. 钢结构, 2015(8):27-33. Xu ting, Wang wei, Chen yiyi. A review on Foreign research status of one-side bolt[J]. Steel Construction, 2015(8):27-33. (in Chinese)
[14] He R, Shu X, Zhang Z. Experimental Study on the Tensile Performance of High-strength Blind-bolted T-stub with Endplate Tapping[J]. Journal of Engineering Science and Technology Review, 2018, 11(5):109-118.
[15] Li B, Wang J, Lu Y, et al. Seismic response tests and analytical assessment of blind bolted assembly CFST frames with beam-connected SPSWs[J]. Engineering Structures, 2019, 178:343-360.
[16] Kurobane Y, Packer J A, Wardenier J, et al. Design guide for structural hollow section column connections[M]. Köln:TÜV-Verlag, 2004:80-84.
[17] SCI/BCSA, Joints in steel construction:simple connections[S]. London, UK:The Steel Construction Institute (SCI) &The British Constructional Steelwork Association (BCSA), 2005.
[18] 王志宇, 王清远, 刘晓凯, 等. 基于屈服线理论的螺栓端板连接方钢管柱承载力计算模型研究[J]. 建筑结构学报, 2016(6):160-173. Wang zhiyu, Wang qingyuan, Liu xiaokai, et al. Yield line theory based loading capacity analytical model of bolted endplate connections to square hollow section columns[J]. Journal of Building Structures, 2016(6):160-173. (in Chinese)
[19] Wang Z Y, Wang Q Y. Yield and ultimate strengths determination of a blind bolted endplate connection to square hollow section column[J]. Engineering Structures, 2016, 111:345-369.
[20] Eldin A E M. Behaviour of blind bolted moment connections for square HSS columns[D]. Canada:McMaster University, 1993:141-150.
[21] Lee J, Goldsworthy H M, Gad E F. Blind bolted T-stub connections to unfilled hollow section columns in low rise structures[J]. Journal of Constructional Steel Research, 2010, 66(8):981-992.
[22] 陈学森, 施刚, 赵俊林, 等. 基于组件法的超大承载力端板连接节点弯矩-转角曲线计算方法[J]. 工程力学, 2017, 34(5):30-41. Chen xuesen, Shi gang, Zhao junlin, et al. Calculation of Moment-rotation curves of ultra-large capacity end-plate connections based on component method. Engineering Mechanics, 2017,34(5):30-41. (in Chinese)
[23] Ancon Building Products Pty Ltd. Lindapter hollo-bolt brochure[EB/OL]. https://www.ancon.com.au/products/lindapter-weld-free-steel-connectors/product-range/hollobolt, 2013-07-15.
[24] 徐婷, 王伟, 陈以一. 单边螺栓连接性能试验报告[R]. 上海:同济大学钢与轻型结构研究室, 2015. Xu Ting, Wang Wei, Chen Yiyi. Test report fot connection performance of one-side bolt[R]. Shanghai:Steel and Lightweight Structures in Tongji University, 2015. (in Chinese)
[1] 朱崇绩, 董毓利. 火灾下邻边简支邻边固支双向板极限承载力的能量计算法[J]. 工程力学, 2018, 35(8): 67-78,99.
[2] 吕伟荣, 朱峰, 卢倍嵘, 石卫华, 张家志, 何潇锟, 卿胜青. 风机基础开孔板连接件剪切受力机理试验研究[J]. 工程力学, 2018, 35(7): 127-138.
[3] 柳扬清, 刘玉擎, 郑双杰. 肋板间距对开孔板连接件抗剪刚度影响分析[J]. 工程力学, 2016, 33(9): 179-185.
[4] 赵 晨 刘玉擎. 开孔板连接件抗剪承载力试验研究[J]. 工程力学, 2012, 29(12): 349-354.
[5] 王荣;程昌钧;. 计算开孔薄板临界载荷的边界元方法[J]. 工程力学, 1996, 13(3): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[2] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[3] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[4] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[5] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
[8] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 贾超;张楚汉;金峰;程卫帅. 可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J]. 工程力学, 2006, 23(4): 12 -16,1 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日