工程力学 ›› 2018, Vol. 35 ›› Issue (8): 46-54.doi: 10.6052/j.issn.1000-4750.2017.04.0272

• 土木工程学科 • 上一篇    下一篇

温度对斜拉桥跨中竖向位移的作用机理研究

周毅1, 孙利民2, 谢谟文1   

  1. 1. 北京科技大学土木工程系, 北京 100083;
    2. 同济大学土木工程防灾国家重点实验室, 上海 200092
  • 收稿日期:2017-04-09 修回日期:2017-09-08 出版日期:2018-08-29 发布日期:2018-08-29
  • 通讯作者: 孙利民(1963-),男,内蒙古人,教授,博士,博导,主要从事结构健康监测和振动控制研究(E-mail:lmsun@tongji.edu.cn). E-mail:lmsun@tongji.edu.cn
  • 作者简介:周毅(1986-),男,浙江人,讲师,博士,主要从事结构健康监测研究(E-mail:zhouyi@ustb.edu.cn);谢谟文(1965-),男,湖北人,教授,博士,博导,主要从事岩土工程和结构防灾减灾研究(E-mail:mowenxie@126.com).
  • 基金资助:
    国家自然科学基金项目(51608034);中国博士后科学基金项目(2016M600925);中央高校基本科研业务费专项资金项目(FRF-TP-16-012A1)

TEMPERATURE EFFECTS ON THE MID-SPAN VERTICAL DISPLACEMENT OF A CABLE-STAYED BRIDGE

ZHOU Yi1, SUN Li-min2, XIE Mo-wen1   

  1. 1. Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-04-09 Revised:2017-09-08 Online:2018-08-29 Published:2018-08-29

摘要: 跨中竖向位移是桥梁结构健康监测中的重要指标之一,它会随环境温度的改变发生可观的变化。利用上海长江大桥的现场实测数据,该文通过平面几何分析和有限元分析研究了温度对双塔斜拉桥跨中竖向位移的影响机理,揭示了斜拉桥在温度作用下的行为规律。研究表明:温度引起的斜拉桥跨中竖向位移不随环境温度或某种结构温度单调变化,可通过拉索温度、主梁平均温度、主梁顶底板温差和桥塔平均温度的热胀冷缩效应线性叠加计算;拉索温度和主梁平均温度对上海长江大桥跨中竖向位移的影响远大于主梁顶底板温差和桥塔平均温度,且拉索温度的效应方向与其余三种温度相反;该文提出的平面几何分析模型可初步估计斜拉桥跨中竖向位移随温度的变化。

关键词: 斜拉桥, 温度效应, 机理, 跨中竖向位移, 结构健康监测

Abstract: The mid-span vertical displacement is an important index in structural health monitoring, and it changes considerably with the temperature variation. Based on field measurements of the Shanghai Yangtze River Bridge (SYRB), this study investigated the mechanisms of temperature effects on the mid-span vertical displacement of two-tower cable-stayed bridges through the plane geometric analysis and the finite element analysis, with the purpose of understanding the behavior of such bridges. It is found that the thermally induced mid-span vertical displacement (DT) does not vary monotonously with the temperature of atmosphere or a particular structural component. The DT could be well approximated by a multiple linear superposition of thermal expansion effects of the cable temperature (CT), girder average temperature (GAT), differential temperature between top and bottom plates of the girder (GDT), and tower average temperature (TT). For SYRB, the effects of CT and GAT on the variation of DT are almost one order greater than those of the GDT and TT, and the direction that DT takes in response to CT is opposite to that of the other three temperatures. The simplified plane geometric model proposed in this paper is able to estimate the DT of cable-stayed bridges preliminarily.

Key words: cable-stayed bridge, temperature effect, mechanism, mid-span vertical displacement, structural health monitoring

中图分类号: 

  • U448.27
[1] 李惠, 鲍跃全, 李顺龙, 等. 结构健康监测数据科学与工程[J]. 工程力学, 2015, 32(8):1-7. Li Hui, Bao Yuequan, Li Shunlong, et al. Data science and engineering for structural health monitoring[J]. Engineering Mechanics, 2015, 32(8):1-7. (in Chinese)
[2] Yarnold M T, Moon F L. Temperature-based structural health monitoring baseline for long-span bridges[J]. Engineering Structures, 2015, 86:157-167.
[3] 宋永生, 丁幼亮, 王晓晶, 等. 运营状态下悬索桥钢桥面板疲劳效应监测与分析[J]. 工程力学, 2013, 30(11):94-100. Song Yongsheng, Ding Youliang, Wang Xiaojing, et al. Monitoring and analysis of fatigue effects on steel deck of a suspension bridge in working conditions[J]. Engineering Mechanics, 2013, 30(11):94-100. (in Chinese)
[4] Zhu J, Meng Q. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(6):4017017.
[5] Ni Y Q, Hua X G, Wong K Y, et al. Assessment of bridge expansion joints using long-term displacement and temperature measurement[J]. Journal of Performance of Constructed Facilities, 2007, 21(2):143-151.
[6] Xu Y L, Chen B, Ng C L, et al. Monitoring temperature effect on a long suspension bridge[J]. structural control and health monitoring, 2010, 17(6):632-653.
[7] Xia Y, Chen B, Weng S, et al. Temperature effect on vibration properties of civil structures:a literature review and case studies[J]. Journal of Civil Structural Health Monitoring, 2012, 2(1):29-46.
[8] Li X, Ren W, Zhong J. Making good use of suspension bridge health monitoring system[C]//Proceedings of 1st International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2011). Zurich, Switzerland:Trans Tech Publications Inc., 2011.
[9] Xia Q, Zhang J, Tian Y, et al. Experimental study of thermal effects on a long-span suspension bridge[J]. Journal of Bridge Engineering, 2017, 22(7):4017034.
[10] Brownjohn J M W, Koo K, Scullion A, et al. Operational deformations in long-span bridges[J]. Structure and Infrastructure Engineering, 2015, 11(4):556-574.
[11] Westgate R J. Environmental effects on a suspension bridges performance[D]. Sheffield:The University of Sheffield, 2012.
[12] Katsuchi H, Yamada H, Kusuhara S. Structural monitoring and design verification of Akashi Kaikyo Bridge[C]//Proceedings of Earth & Space 2008:Engineering, Science, Construction, and Operations in Challenging Environments. Reston, Virginia, United States:American Society of Civil Engineers, 2008.
[13] Kim S, Kim C, Lee J. Monitoring results of a self-anchored suspension bridge[M]//Sensing Issues in Civil Structural Health Monitoring. Dordrecht, Netherlands:Springer, 2005:475-484.
[14] Cao Y, Yim J, Zhao Y, et al. Temperature effects on cable stayed bridge using health monitoring system:a case study[J]. Structural Health Monitoring, 2011, 10(5):523-537.
[15] Lee J, Chang S P, Kim H, et al. Statistical time series analysis of long-term monitoring results of a cable-stayed bridge[C]//Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost. Boca Raton, Florida, United States:CRC Press, 2006.
[16] 李雪莲. 基于长期监测数据的斜拉桥静力特性分析[D]. 上海:同济大学, 2012. Li Xuelian. Static behavior analysis of cable-stayed bridge based on long-term monitoring data[D]. Shanghai:Tongji University, 2012. (In Chinese)
[17] Zhu Y, Fu Y, Chen W, et al. Online deflection monitoring system for Dafosi Cable-stayed Bridge[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(8-9):701-707.
[18] 周建庭, 杨建喜, 梁宗保. 实时监测桥梁寿命预测理论及应用[M]. 北京:科学出版社, 2010. Zhou Jianting., Yang Jianxi., Liang Zongbao. Theory and application of bridge life prediction based on real-time monitoring[M]. Beijing:Science Press, 2010. (in Chinese)
[19] Shao C. Shanghai Yangtze River Bridge-the longest road-cum-rail bridge in China[J]. Structural Engineering International, 2010, 20(3):291-295.
[20] 邓小伟, 石雪飞, 阮欣. 超大跨径钢斜拉桥的温度荷载调研与温度效应分析[J]. 石家庄铁道大学学报(自然科学版), 2010, 23(03):57-62. Deng Xiaowei, Shi Xuefei, Ruan Xin. Investigation and analysis of temperature acts on long-span steel cable-stayed bridges[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2010, 23(03):57-62. (in Chinese)
[21] JTG/T D65-01-2007, 公路斜拉桥设计细则[S]. 北京:人民交通出版社, 2007. JTG/T D65-01-2007, Guidelines for design of highway cable-stayed bridge[S]. Beijing:China Communications Press, 2007. (in Chinese)
[22] EN 1991-1-5:2003E, Eurocode 1:actions on structures, Part 1-5:General actions-thermal actions[S]. Brussels, Belgium:European Committee for Standardization (CEN), 2003.
[23] 道路橋示方書[S]. 東京:日本道路協会, 2012. Specifications for highway bridges[S]. Tokyo:Japan Road Association, 2012. (in Japanese)
[24] Zhou Y, Sun L, Peng Z. Mechanisms of thermally induced deflection of a long-span cable-stayed bridge[J]. Smart Structures and Systems, 2015, 15(3):505-522.
[1] 杜晓庆, 王玉梁, 赵燕, 孙雅慧, 代钦. 高雷诺数下错列双圆柱气动干扰的机理研究[J]. 工程力学, 2018, 35(9): 223-231.
[2] 王浩, 柯世堂. 不同四塔组合形式对特大型冷却塔局部非高斯风压分布影响研究[J]. 工程力学, 2018, 35(8): 162-171.
[3] 宋子杰, 胡志强. 预测船舶碰撞与搁浅结构动力响应的程序实现[J]. 工程力学, 2018, 35(8): 245-256.
[4] 孟宝, 钟炜辉, 郝际平. 基于节点刚度的钢框架梁柱子结构抗倒塌性能试验研究[J]. 工程力学, 2018, 35(6): 88-96.
[5] 易江, 莫金生, 李建中. 强震作用下独塔斜拉桥拉索松弛现象研究[J]. 工程力学, 2018, 35(6): 97-104,114.
[6] 李珂, 葛耀君, 赵林, 夏锦林. 大跨度斜拉桥气弹模型对结构静风响应的反应能力的数值研究[J]. 工程力学, 2018, 35(3): 79-85.
[7] 杜永峰, 郑文智, 李万润, 李慧, 王浩. 超长复杂基础隔震结构静动力特性温度相关性研究[J]. 工程力学, 2017, 34(7): 69-78.
[8] 施正捷, 李全旺, 樊健生. 偏心钢结构节点梁柱-核心区受力机理研究[J]. 工程力学, 2017, 34(5): 68-77.
[9] 施刚, 陈玉峰. 基于微观机理的Q460钢材角焊缝搭接接头延性断裂研究[J]. 工程力学, 2017, 34(4): 13-21.
[10] 朱志辉, 杨乐, 王力东, 蔡成标, 戴公连. 地震作用下铁路斜拉桥动力响应及行车安全性研究[J]. 工程力学, 2017, 34(4): 78-87, 100.
[11] 张欢, 周广东, 吴二军. 考虑参数更新的大跨桥梁温差极值分布估计方法研究[J]. 工程力学, 2017, 34(3): 124-130.
[12] 傅杰, 刘昆, 王自力. 强桁材结构在面内冲压载荷作用下的损伤变形机理研究[J]. 工程力学, 2017, 34(12): 248-256.
[13] 陆明飞, 叶继红. 基于构形易损性理论的单层网壳结构静力稳定性研究[J]. 工程力学, 2017, 34(1): 76-84.
[14] 何文朋, 雷家艳. 运营实桥在线监测系统的建立及数据初步分析[J]. 工程力学, 2016, 33(增刊): 234-238.
[15] 孙斌, 胡志强, 王晋. 船底肋板在尖锐礁石搁浅场景下的受力分析[J]. 工程力学, 2016, 33(增刊): 266-269,295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[2] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[3] 戈新生;陈立群;刘延柱. 一类多体系统的非完整运动规划最优控制[J]. 工程力学, 2006, 23(3): 63 -68 .
[4] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[5] 罗冠炜;张艳龙;谢建华. 多自由度含间隙振动系统周期运动的二重Hopf分岔[J]. 工程力学, 2006, 23(3): 37 -43,6 .
[6] 李庆祥;孙炳楠;. 均匀流场中小曲率薄膜的气动稳定性分析[J]. 工程力学, 2006, 23(4): 39 -44,5 .
[7] 李雷;谢水生;黄国杰. 应变梯度塑性理论下超薄梁弯曲中尺度效应的数值研究[J]. 工程力学, 2006, 23(3): 44 -48 .
[8] 易贤仁;陶高梁;胡在良. 钢筋混凝土烟囱预应力环箍加固效应研究[J]. 工程力学, 2006, 23(4): 109 -113 .
[9] 张广清;陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160 -165 .
[10] 周本谋;范宝春;陈志华;叶经方;丁汉新;靳建明. 电磁体积力作用下的圆柱绕流实验研究[J]. 工程力学, 2006, 23(4): 172 -176 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日