工程力学 ›› 2019, Vol. 36 ›› Issue (12): 218-226.doi: 10.6052/j.issn.1000-4750.2019.06.0297

• 土木工程学科 • 上一篇    下一篇

自复位圆钢管混凝土柱—钢梁连接节点足尺试验研究

朱丽华1,2, 潘鑫波1, 吉翠茹1, 赵城1   

  1. 1. 西安建筑科技大学土木工程学院, 西安 710055;
    2. 西安建筑科技大学结构工程与抗震教育部重点实验室, 西安 710055
  • 收稿日期:2019-06-01 修回日期:2019-09-04 出版日期:2019-12-25 发布日期:2019-09-16
  • 通讯作者: 朱丽华(1979-),男,江苏溧阳人,教授,博士,博导,主要从事地震工程、结构振动控制研究(E-mail:zhulihuaxa@163.com). E-mail:zhulihuaxa@163.com
  • 作者简介:潘鑫波(1994-),男,山西运城人,硕士生,主要从事结构工程抗震研究(E-mail:514402069@qq.com);吉翠茹(1992-),女,河南洛阳人,硕士生,主要从事结构工程抗震研究(E-mail:844552761@qq.com);赵城(1995-),男,云南景洪人,硕士生,主要从事结构工程抗震研究(E-mail:591930940@qq.com).
  • 基金资助:
    国家自然科学基金项目(51878552);国家重点研发计划项目(2017YFC0703600);陕西省重点研发计划重点产业创新链(群)项目(2018ZDCXL-SF-03-03-01)

A FULL-SCALE TEST ON SELF-CENTERING CIRCULAR CONCRETE FILLED STEEL TUBULAR COLUMN TO STEEL BEAM CONNECTIONS

ZHU Li-hua1,2, PAN Xin-bo1, JI Cui-ru1, ZHAO Cheng1   

  1. 1. School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China;
    2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education(XAUAT), Xi'an 710055, China
  • Received:2019-06-01 Revised:2019-09-04 Online:2019-12-25 Published:2019-09-16

摘要: 为了减小钢管混凝土柱—钢梁框架结构震后的残余变形,提出了一种腹板摩擦式自复位圆钢管混凝土柱—钢梁连接节点型式。介绍了自复位节点的构造,并对其受力性能进行了理论分析。通过3个自复位节点试件的低周反复加载试验,研究节点在循环荷载作用下的自复位和耗能能力。分析了自复位节点可能的破坏模式,钢绞线预应力和摩擦装置螺栓的预紧力对节点受力性能的影响,还分析了钢绞线预应力的变化规律和节点主要部位应变的变化特点。研究结果表明,腹板摩擦式自复位圆钢管混凝土柱—钢梁连接节点具有良好的耗能和自复位能力。节点初始刚度、临界开口弯矩和自复位能力随钢绞线预应力的增大而提高。节点耗能能力随腹板摩擦装置螺栓的预紧力的增大而提高。

关键词: 自复位, 圆钢管混凝土柱-钢梁连接节点, 摩擦耗能, 低周反复加载, 后张拉

Abstract: To reduce the residual deformation of concrete-filled steel tubular column-steel beam frame structure after earthquakes, a self-centering circular concrete-filled steel tubular column-to-steel beam connection with web friction devices is proposed. The details of the self-centering connection are introduced and its mechanical behavior was theoretically analyzed. The self-centering and energy dissipation capacities were investigated by quasi-static tests on three connection specimens. The possible failure modes of the self-centering connection and the effect of strand prestress force and bolt prestress force of the web friction device on the mechanical performance of the connection were analyzed. The variation of the strand prestress force and the strain in main parts of the connection were also analyzed. The results show that the connection had good self-centering and energy dissipation capacities. The initial stiffness, the imminent gap-opening moment and the self-centering capacity of the connection increased with the increasing of the initial strand prestress force. The energy dissipation capacity of the connection was enhanced with the increasing of the bolt prestress force of the web friction device.

Key words: self-centering, circular concrete-filled steel tubular column to steel beam connection, friction energy dissipation, low-cyclic reversed loading, post-tension

中图分类号: 

  • TU398.9
[1] Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering:PEER 2010/109[R]. Berkeley:University of California Berkeley, 2010.
[2] 吕西林, 陈云, 毛苑君. 结构抗震设计的新概念-可恢复功能结构[J]. 同济大学学报(自然科学版), 2011, 39(7):941-947. Lü Xilin, Chen Yun, Mao Yuanjun. New concept of structural seismic design:earthquake resilient structures[J]. Journal of Tongji University (Natural Science), 2011, 39(7):941-947. (in Chinese)
[3] 周颖, 吕西林. 摇摆结构及自复位结构研究综述[J]. 建筑结构学报, 2011, 32(9):1-10. Zhou Ying, Lü Xilin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9):1-10. (in Chinese)
[4] 张爱林, 张艳霞, 刘学春. 震后可恢复功能的预应力钢结构体系研究进展[J]. 北京工业大学学报, 2013, 39(4):507-515. Zhang Ailin, Zhang Yanxia, Liu Xuechun. Research outlook of earthquake resilient prestressed steel structures[J]. Journal of Beijing University of Technology, 2013, 39(4):507-515. (in Chinese)
[5] Zhang A L, Zhang Y X, Li R, et al. Cyclic behavior of a prefabricated self-centering beam-column connection with a bolted web friction device[J]. Engineering Structures, 2016, 111:185-198.
[6] Priestley M J N, Tao J R. Seismic response of precast concrete frames with partially debonded tendons[J]. PCI Journal, 1993, 38(1):58-67.
[7] Priestley M J N, MacRae G A. Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons[J]. PCI Journal, 1996, 41(1):64-81.
[8] Ricles J M, Sause R, Peng S W. Experimental evaluation of earthquake resistant posttensioned steel connections[J]. Journal of Structural Engineering, 2002, 128(7):850-859.
[9] 潘振华, 潘鹏, 叶列平, 等. 自复位钢框架节点有限元模拟及参数分析[J]. 建筑结构学报, 2011, 32(3):35-42. Pan Zhenhua, Pan Peng, Ye Lieping, et al. Modeling and parametric study of beam-to-column connection for self-centering steel moment frames[J]. Journal of Building Structures, 2011, 32(3):35-42. (in Chinese)
[10] 郭彤, 宋良龙, 张国栋, 等. 腹板摩擦式自定心预应力混凝土框架梁柱节点的试验研究[J]. 土木工程学报, 2012, 45(6):23-31. Guo Tong, Song Lianglong, Zhang Guodong, et al. Experimental study on beam-column connections of self-centering prestressed concrete frame with web friction devices[J]. China Civil Engineering Journal, 2012, 45(6):23-32. (in Chinese)
[11] 张艳霞, 张爱林, 孙文龙. 震后可恢复功能的钢框架预应力梁柱节点性能研究[J]. 工业建筑, 2014, 44(11):160-167. Zhang Yanxia, Zhang Ailin, Sun Wenlong. Behavior study of steel-centering beam-column connections in resilient steel frames after earthquake[J]. Industrial Construction, 2014, 44(11):160-167. (in Chinese)
[12] Zhang Y X, Li Q G, Yan Z G, et al. Experimental study on spatial prefabricated self-centering steel frame with beam-column connections containing bolted web friction devices[J]. Engineering Structures, 2019, 195:1-21.
[13] 蔡小宁, 孟少平. 预应力自复位混凝土框架节点恢复力模型研究[J]. 工程力学, 2018, 35(1):182-190, 200. Cai Xiaoning, Meng Shaoping. Research on restoring force model of the prestressed self-centering concrete frame joints[J]. Engineering Mechanics, 2018, 35(1):182-190, 200. (in Chinese)
[14] 黄林杰, 周臻. 带填充墙自复位预应力混凝土框架结构的抗震性能分析[J]. 工程力学, 2018, 35(10):162-171. Huang Linjie, Zhou Zhen. Aseismic analysis of self-centering prestressed concrete frame structure with infill walls[J]. Engineering Mechanics, 2018, 35(10):162-171. (in Chinese)
[15] Chou C C, Chen J H, Chen Y C, et al. Evaluating performance of post-tensioned steel connections with strands and reduced flange plates[J]. Earthquake Engineering and Structural Dynamics, 2006, 35(9):1167-1185.
[16] 牟犇, 王君昌, 崔瑶, 等. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6):164-174. Mou Ben, Wang Junchang, Cui Yao, et al. The seismic performance of an improved square steel hollow column to beam joint[J]. Engineering Mechanics, 2019, 36(6):164-174. (in Chinese)
[17] Garlock M M, Sause R, Ricles J M. Behavior and design of post-tensioned steel frame systems[J]. Journal of Structural Engineering, 2007, 133(3):389-399.
[18] Lin Y C, Sause R, Ricles J M. Seismic performance of a large-scale steel self-centering moment-resisting frame:MCE hybrid simulations and quasi-static pushover tests[J]. Journal of Structural Engineering, 2013, 139(7):1227-1236.
[19] Ricles J M, Sause R, Peng S W. Experimental evaluation of earthquake resistant posttensioned steel connections[J]. Journal of Structural Engineering, 2002, 128(7):850-859.
[20] Wolski M, Ricles J M, Sause R. Experimental study of a self-centering beam-column connection with bottom flange friction device[J]. Journal of Structural Engineering, 2009, 135(5):479-488.
[21] 邹昀, 林晖, 马卫强. 具有自复位功能装配式框架节点抗震性能的影响因素分析[J]. 工程力学, 2015, 32(增刊):72-77. Zou Yun, Lin Hui, Ma Weiqiang. Influence factors analysis on aseismic behavior of prefabricated frame joints with capacity of self-centering[J]. Engineering Mechanics, 2015, 32(Suppl):72-77. (in Chinese)
[22] Ramhormozian S, Clifton G C, MacRae G A, et al. Stiffness-based approach for Belleville springs use in friction sliding structural connections[J]. Journal of Constructional Steel Research, 2017, 138:340-356.
[1] 徐龙河, 杨雪飞. 自复位支撑-钢框架结构直接基于位移的支撑参数设计与分析[J]. 工程力学, 2019, 36(8): 141-148.
[2] 刘嘉琳, 徐龙河. 带自复位耗能支撑钢板剪力墙墙板受力性能研究[J]. 工程力学, 2019, 36(7): 156-164.
[3] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[4] 卢啸, 吕泉林. 自复位粘弹性腹杆的力学原理与滞回性能研究[J]. 工程力学, 2019, 36(6): 138-146.
[5] 黄宙, 李宏男, 付兴. 自复位放大位移型SMA阻尼器优化设计方法研究[J]. 工程力学, 2019, 36(6): 202-210.
[6] 徐龙河, 武虎. 设置自复位耗能支撑的斜拉桥横向抗震性能研究[J]. 工程力学, 2019, 36(4): 177-187.
[7] 陈庆军, 梁竣杰, 蔡健, 黎哲, 何岸, 左志亮. 钢套管再生混凝土加固柱抗震性能及影响参数研究[J]. 工程力学, 2019, 36(12): 206-217,256.
[8] 徐龙河, 杨雪飞. 侧移曲线对基于位移设计的多层自复位摩擦耗能支撑钢框架抗震性能影响研究[J]. 工程力学, 2019, 36(12): 198-205.
[9] 丁杰, 邹昀, 蔡鑫, 李天祺, 郑黎君, 赵桃干. 损伤可控型钢框架边节点的试验研究[J]. 工程力学, 2018, 35(S1): 107-112.
[10] 肖水晶, 徐龙河, 卢啸. 具有复位功能的钢筋混凝土剪力墙设计与性能研究[J]. 工程力学, 2018, 35(8): 130-137.
[11] 徐龙河, 王坤鹏, 谢行思, 李忠献. 具有复位功能的阻尼耗能支撑滞回模型与抗震性能研究[J]. 工程力学, 2018, 35(7): 39-46.
[12] 刘明明, 李宏男, 付兴. 一种新型自复位SMA-剪切型铅阻尼器的试验及其数值分析[J]. 工程力学, 2018, 35(6): 52-57,67.
[13] 武大洋, 吕西林. 基于分布参数模型的复合自复位结构参数分析[J]. 工程力学, 2018, 35(6): 78-87.
[14] 韩强, 贾振雷, 王晓强, 黄超. 内嵌碟簧型自复位防屈曲支撑性能试验及其恢复力模型研究[J]. 工程力学, 2018, 35(6): 144-150,190.
[15] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[2] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[3] 李忠献,黄 信. 行波效应对深水连续刚构桥地震响应的影响[J]. 工程力学, 2013, 30(3): 120 -125 .
[4] 李皓玉;杨绍普;齐月芹;徐步青. 移动随机荷载下沥青路面的动力学特性和参数影响分析[J]. 工程力学, 2011, 28(11): 159 -165 .
[5] 赵同峰;欧阳伟;郝晓彬. 方钢管钢骨高强混凝土压弯剪承载力分析[J]. 工程力学, 2011, 28(11): 153 -158, .
[6] 尚仁杰;郭彦林;吴转琴;张心斌;孙文波. 基于索合力线形状的车辐式结构找形方法[J]. 工程力学, 2011, 28(11): 145 -152 .
[7] 罗尧治;刘海锋;娄荣. 考虑焊接球节点变形的网壳结构多尺度有限元分析方法[J]. 工程力学, 2011, 28(11): 190 -196, .
[8] 祝效华;王宇;童华;刘应华. 基于弹塑性力学的油气井打捞公锥造扣全过程分析和评价[J]. 工程力学, 2011, 28(11): 184 -189 .
[9] 王进廷;张楚汉;金峰. 有阻尼动力方程显式积分方法的精度研究[J]. 工程力学, 2006, 23(3): 1 -5 .
[10] 熊铁华;常晓林. 响应面法在结构体系可靠度分析中的应用[J]. 工程力学, 2006, 23(4): 58 -61 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日