工程力学 ›› 2020, Vol. 37 ›› Issue (2): 1-15.doi: 10.6052/j.issn.1000-4750.2019.05.ST07

• 综述 •    下一篇

混凝土与各向同性岩石强度理论研究进展

丁发兴1,2, 吴霞1, 向平1, 余志武1,2, 龚琛杰1   

  1. 1. 中南大学土木工程学院, 湖南, 长沙 410075;
    2. 湖南省装配式建筑工程技术研究中心, 湖南, 长沙 410075
  • 收稿日期:2019-05-31 修回日期:2019-12-16 出版日期:2020-02-25 发布日期:2019-12-20
  • 通讯作者: 吴霞(1996-),女,四川人,硕士生,主要从事混凝土及岩石强度理论研究(E-mail:wuxia1@csu.edu.cn). E-mail:wuxia1@csu.edu.cn
  • 作者简介:丁发兴(1979-),男,浙江人,教授,工学博士,主要从事混凝土及岩石强度理论、钢-混凝土组合结构研究(E-mail:dinfaxin@csu.edu.cn);向平(1982-),男,湖南人,特聘教授,工学博士,主要从事混凝土结构抗震及计算力学研究(E-mail:pxiang@)csu.edu.cn);余志武(1955-),男,湖南人,教授,工学硕士,主要从事结构工程、桥梁工程与防灾工程研究(E-mail:zhwyu@csu.edu.cn);龚琛杰(1990-),男,重庆人,讲师,工学博士,主要从事岩石力学与隧道工程研究(E-mail:gongcj@csu.edu.cn).
  • 基金资助:
    国家重点研究计划项目(2017YFC0703404);湖南省自然科学杰出青年基金项目(2019JJ20029)

REVIEWS ON STRENGTH THEORIES OF CONCRETE AND ISOTROPIC ROCK

DING Fa-xing1,2, WU Xia1, XIANG Ping1, YU Zhi-wu1,2, GONG Chen-jie1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China;
    2. Engineering Technology Research Center for Prefabricated Construction Industrialization of Hunan Province, Changsha, Hunan 410075, China
  • Received:2019-05-31 Revised:2019-12-16 Online:2020-02-25 Published:2019-12-20

摘要: 强度理论是研究复杂应力状态下材料是否破坏的理论,该文总结了古典强度理论以及混凝土和各向同性岩石等两类现代强度理论,将各项同性现代强度理论分为剪应力强度理论、八面体强度理论与主应力强度理论。通过收集国内外已有相关三轴实验数据对各种主要强度理论进行论述、比较与评价,在此基础上对混凝土和各向同性岩石的主应力空间损伤比强度理论进行展望。

关键词: 混凝土, 岩石, 强度理论, 八面体, 双剪, 损伤比

Abstract: Strength theory deals with the failure of materials under complex stress states. Summarizing the classical strength theories and two kinds of modern strength theories of concrete and isotropic rock. Isotropic strength theories include shear stress strength theory, octahedral strength theory, and principal stress strength theory. Various major strength theories were discussed, compared, and evaluated through collecting relevant domestic and foreign triaxial experimental data. Based on previous researches, the principal stress-space strength theories of concrete and isotropic rock were prospected.

Key words: concrete, rock, strength theory, octahedral, twin shear, damage ratio

中图分类号: 

  • TU501
[1] Coulomb C A. Sur une application des regles de maximis et minimis aquelques problemes de statique relatifs al'architecture[J]. Memoires de Mathematique et de Physique, 1773, 7:343-382.
[2] Mohr O. Welche Umstande bedingen die Elastizitatsgrenze und den bruch eines materials[J]. Zeitschrift des Vereins Deutscher Ingenieure, 1900, 44:1524-1530.
[3] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京:清华大学出版社, 1997. Guo Zhenhai. Deformation and strength of concreteexperimental foundation and constitutive relation[M]. Beijing:Tsinghua University Press, 1997. (in Chinese)
[4] 周筑宝, 卢楚芬. 三轴应力状态下混凝土的一种新强度准则[J]. 固体力学学报, 1999, 20(3):272-280. Zhou Zhubao, Lu Chufeng. A new strength criterion of plain concrete under triaxial stresses conditions[J]. Acta Mechanica Solida Sinica, 1999, 20(3):272-280. (in Chinese)
[5] 俞茂宏. 混凝土强度理论及其应用[M]. 北京:高等教育出版社, 2002. Yu Maohong. Concrete strength theory and its application[M]. Beijing:High Education Press, 2002. (in Chinese)
[6] Bresler B, Pister K S. Strength of concrete under combined stresses[J]. Journal Proceedings, 1958, 55(9):321-345.
[7] William K J, Warnke E P. Constitutive models for the triaxial behavior of concrete[C]//Proceedings of the International Association for Bridge and Structural Engineering. Bergamo, Italy, Zurich, 1975(19):1-30.
[8] Ottosen N S. A failure criterion for concrete[J]. Journal of Engineering Mechanics, 1977, 103(4):527-535.
[9] Hesieh S S, Ting E C, Chen W F. An elasticity-fracture model for concrete[C]//Proceeding of 3rd Engineering Mechanics Division, Special Conference ASCE. Austin, Johnson C P, ed, 1979:437-440.
[10] Kotsovos M D. A mathematical description of the strength properties of concrete under generalized stress[J]. Magazine of Concrete Research, 1979, 31(108):151-158.
[11] Podgorski J. General failure criterion for isotropic media[J]. Journal of Engineering Mechanics, 1984, 111(2):188-201.
[12] 过镇海, 王传志. 多轴应力下混凝土的强度和破坏准则研究[J]. 土木工程学报, 1991, 24(3):1-14. Guo Zhenhai, Wang Chuanzhi. Investigation of strength and failure criterion of concrete under multiaxial stresses[J]. China Civil Engineering Journal, 1991, 24(3):1-14. (in Chinese)
[13] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下多种混凝土材料的通用破坏准则[J]. 土木工程学报, 1996, 29(1):25-32. Song Yupu, Zhao Guofan, Peng Fang, et al. General failure criterion for different concrete materials under multiaxial stresses[J]. China Civil Engineering Journal, 1996, 29(1):25-32. (in Chinese)
[14] 宋玉普, 赵国藩, 彭放. 三轴加载下混凝土的变形和强度[J]. 水利学报, 1991(12):17-24. Song Yupu, Zhao Guofan, Peng Fang. Deformation and strength of concrete under triaxial loading[J]. Journal of Hydraulic Engineering, 1991(12):17-24. (in Chinese)
[15] Yu M H, He L N. A new model and theory on yield and failure of materials under the complex stress state[C]//Mechanical Behaviour of Materials 6. Oxford, Jono M and Inoue T (editors), Pergamon Press, 1991:841-846.
[16] Yu M H. Twin shear stress yield criterion[J]. International Journal of Mechanical Sciences, 1983, 25(1):71-74.
[17] Yu M H, He L N, Song L Y. Twin shear stress theory and its generalization[J]. Science in China, Series A, 1985, 28(11):1174-1183.
[18] 俞茂宏, 刘凤羽. 广义双剪应力准则角隅模型[J]. 力学学报, 1990, 22(2):213-216. Yu Maohong, Liu Fengyu. Smooth ridge model of generalized twin shear stress criterion[J]. Acta Mechanica Sinica, 1990, 22(2):213-216. (in Chinese)
[19] 俞茂宏, 刘凤羽. 双剪应力三参数准则及其角隅模型[J]. 土木工程学报, 1988, 21(3):90-95. Yu Maohong, Liu Fengyu. Twin shear stress three parameter criterion and its corner model[J]. China Civil Engineering Journal, 1988, 21(3):90-95. (in Chinese)
[20] 俞茂宏, 刘凤羽, 刘锋, 等. 一个新的普遍形式的强度理论[J]. 土木工程学报, 1990, 23(1):34-40. Yu Maohong, Liu Fengyu, Liu Feng, et al. A new general strength theory[J]. China Civil Engineering Journal, 1990, 23(1):34-40. (in Chinese)
[21] Yu M H. Advances in strength theories for materials under complex stress state in the 20th century[J]. Applied Mechanics Reviews, 2002, 55(3):169-218.
[22] 俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2):1-10. Yu Maohong. Unified strength theory for geomaterials and its application[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2):1-10. (in Chinese)
[23] 俞茂宏, 李晓玲, 张义军. 岩土材料四参数强度准则[C]//第五届岩石、混凝土断裂和强度学术会议. 长沙:国防科技大学出版社, 1993:244-248. Yu Maohong, Li Xiaoling, Zhang Yijun. Four-parameter strength criterion of rock and soil material[C]//Fifth Symposium on Fracture and Strength of Rock and Concrete. Changsha:National University of Defense Technology Press, 1993:244-248. (in Chinese)
[24] Yu M H, Liu F Y, Li Y, et al. Twin shear stress five-parameter criterion and its smooth ridge model[J]. International Academic Publishers, 1989, 1:244-248.
[25] Yu M H, Zhao J, Guan L W. Strength theory for rock and concrete:History, present situation and development[J]. Progress in Natural Science, 1998, 8(4):394-402.
[26] 丁发兴, 余志武. 基于损伤泊松比的混凝土多轴强度准则[J]. 固体力学学报, 2007, 28(1):13-19. Ding Faxing, Yu Zhiwu. Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio[J]. Acta Mechanica Solida Sinica, 2007, 28(1):13-19. (in Chinese)
[27] Ding F X, Yu Z W. Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio[J]. Acta Mechanica Solida Sinica, 2006, 19(4):307-315.
[28] 梁伟, 吴佩刚, 赵光仪, 等. 高强混凝土三轴强度规律与破坏准则[J]. 建筑结构, 2003, 33(1):17-19. Liang Wei, Wu Peigang, Zhao Guangyi, at al. Triaxial strength regularities and failure criterion of high strength concrete[J]. Building Structure, 2003, 33(1):17-19. (in Chinese)
[29] 宋玉普, 何振军. 高强高性能混凝土在多轴压下强度与变形性能的试验研究[J]. 岩石力学与工程学报, 2008, 27(增刊2):3575-3584. Song Yupu, He Zhenjun. Experimental investigation on strength and deformation of plain high-strength high-performance concrete under multiaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl 2):3575-3584. (in Chinese)
[30] 宋玉普, 赵国藩, 彭放, 等. 多轴应力下混凝土的破坏准则[C]//第五届岩石、混凝土断裂和强度学术会议. 长沙:国防科技大学出版社, 1993:121-129. Song Yupu, Zhao Guofan, Peng Fang, et al. Failure criterion of concrete under multiaxial stress[C]//Fifth Symposium on Fracture and Strength of Rock and Concrete. Changsha:National University of Defense Technology Press, 1993:121-129. (in Chinese)
[31] Rong C, Shi Q, Zhang T, et al. New failure criterion models for concrete under multiaxial stress in compression[J]. Construction and Building Materials, 2018, 161:432-441.
[32] 叶献国. 三轴变形混凝土的强度试验和混凝土破坏准则的研究[D]. 北京:清华大学, 1987. Ye Xianguo. Investigation of strength tests and failure criterion of concrete under triaxial compression[D]. Beijing:Tsinghua University, 1987. (in Chinese)
[33] 刘洪春. 高强混凝土在三轴受压及两压一拉应力状态下强度与变形的试验研究[D]. 北京:清华大学, 1997. Liu Hongchun. Experimental investigation on strength and deformation of high-strength concrete under triaxial compression and compression-compression-tension stresses conditions[D]. Beijing:Tsinghua University, 1997. (in Chinese)
[34] Chern J, Yang H, Chen H. Behavior of steel fiber reinforced concrete in multiaxial loading[J]. ACI Materials Journal, 1992, 89(1):32-40.
[35] Candappa D, Sanjayan J, Setunge S. Complete triaxial stress-strain curves of high-strength concrete[J]. Journal of Materials in Civil Engineering, 2001, 13(3):209-215.
[36] 王敬忠. 三轴拉压强度试验和混凝土破坏准则的研究[D]. 北京:清华大学, 1989. Wang Jingzhong. Investigation of strength tests and failure criterion of concrete under triaxial compressiontension[D]. Beijing:Tsinghua University, 1989. (in Chinese)
[37] Xie J, Elwi A, Mac Gregor J. Mechanical properties of three high-strength concretes containing slica fume[J]. ACI Materials Journal, 1995, 92(2):135-145.
[38] 俞茂宏, Oda Y, 盛谦, 等. 统一强度理论的发展及其在土木水利等工程中的应用和经济意义[J]. 建筑科学与工程学报, 2005, 22(1):24-41. Yu Maohong, Oda Y, Sheng Qian, et al. Development of unified strength theory and its applications in civil engineering and its economic significance[J]. Journal of Architecture and Civil Engineering, 2005(1):24-41. (in Chinese)
[39] 宋玉普, 赵国藩, 彭放, 等. 三轴受压状态下轻骨料混凝土的强度特性[J]. 水利学报, 1993(6):10-16. Song Yupu, Zhao Guofan, Peng Fang, et al. Strength of lightweight concrete under triaxial compression[J]. Journal of Hydraulic Engineering, 1993(6):10-16. (in Chinese)
[40] 王立成, 宋玉普. 一个针对轻骨料混凝土的四参数多轴强度准则[J]. 土木工程学报, 2005, 38(7):27-33. Wang Licheng, Song Yupu. A four-parameter multi-axial strength criterion for lightweight aggregate concrete[J]. China Civil Engineering Journal, 2005, 38(7):27-33. (in Chinese)
[41] Wang W Z, Chen Y J, Chen F Y. An egg-shaped failure criterion for lightweight aggregate concrete[J]. Advanced Materials Research, 2011, 250:2085-2088.
[42] 叶艳霞, 张志银, 刘月, 等. 基于弹头型屈服的轻骨料混凝土强度准则[J]. 工程力学, 2019, 36(1):138-145. Ye Yanxia, Zhang Zhiyin, Liu Yue, et al. A strength criterion for lightweight aggregate concrete based on warhead yield[J]. Engineering Mechanics, 2019, 36(1):138-145. (in Chinese)
[43] 王立成, 日和田·希与志. 基于统一强度理论的轻骨料混凝土多轴强度准则[J]. 工程力学, 2006, 23(5):125-131. Wang Licheng, Hiwada Kiyoshi. Multi-axial strength criterion for lightweight aggregate concrete based on the unified strength theory[J]. Engineering Mechanics, 2006, 23(5):125-131. (in Chinese)
[44] Ren Y, Yu Z P, Huang Q, et al. Constitutive model and failure criterions for lightweight aggregate concrete:A true triaxial experimental test[J]. Construction and Building Materials, 2018, 171:759-769.
[45] Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. Journal of the Geotechnical Engineering Division, 1980, 106(9):1013-1035.
[46] Drucker D C, Prager W. Soil mechanics and plastic analysis or limit design[J]. Quarterly of Applied Mathematics, 1952, 10(2):157-165.
[47] Griffith J E, Baldwin W M. Failure theories for generally orthotropic materials[J]. Developments of Theory & Application Mechanics, 1962, 1:410-420.
[48] Mogi K. Effect of the intermediate principal stress on rock failure[J]. Journal of Geophysical Research Atmospheres, 1967, 72:5117-5131.
[49] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. Journal of Geophysical Research Atmospheres, 1971, 76:1255-1269.
[50] Argyris J H, Faust G, Szimmat J, et al. Recent developments in the finite element analysis of prestressed concrete reactor vessels[C]//Proceeding of 2nd International Conference SMIRT. Berlin, 1973.
[51] Gudehus G. Elastoplasticher stoffgleichungen fur trockenn sand[J]. Ingeniur Archiv, 1973, 42:151-169.
[52] Zienkiewicz O C, Pande G N. Some useful forms of isotropic yield surfaces for soil and rock mechanics[C]//Finite Elements in Geomechanics. New York:John Wiley &Sons, 1977:179-190.
[53] 史述昭, 杨光华. 岩体常用屈服函数的改进[J]. 岩土工程学报, 1987, 9(4):60-69. Shi Shuzhao, Yang Guanghua. An improvement of the commonly used yield function for rock material[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(4):60-69. (in Chinese)
[54] Kim M K, Lade P V. Modelling rock strength in three dimensions[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(1):21-33.
[55] Lade P V. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces[J]. International Journal of Solids and Structures, 1977, 13(11):1019-1035.
[56] Lade P V, Duncan J M. Elastoplastic stress-strain the-ory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10):1037-1053.
[57] Aubertin M, Li L, Simon R, et al. Formulation and application of a short-term strength criterion for isotropic rocks[J]. Canadian Geotechnical Journal, 1999, 36(5):947-960.
[58] Pariseau W G. On the significance of dimensionless failure criteria[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(5):555-560.
[59] Pan X D, Hudson J A. A simplified three-dimensional Hoek-Brown yield criterion[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1989, 26(2):59.
[60] Zhang L Y, Zhu H H. Three-dimensional Hoek-Brown strength criterion for rocks[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9):1128-1135.
[61] 姜华. 一种简便的岩石三维Hoek-Brown强度准则[J]. 岩石力学与工程学报, 2015, 34(增刊1):2996-3004. Jiang Hua. A simple convenient three-dimensional Hoek-Brown criterion for rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 1):2996-3004. (in Chinese)
[62] 昝月稳, 俞茂宏. 岩石广义非线性统一强度理论[J]. 西南交通大学学报, 2013, 48(4):616-624.Zan Yuewen, Yu Maohong. Generalized nonlinear unified strength theory of rock[J]. Journal of Southwest Jiaotong University, 2013, 48(4):616-624. (in Chinese)
[63] 昝月稳, 俞茂宏, 王思敬. 岩石的非线性统一强度准则[J]. 岩石力学与工程学报, 2002, 21(10):1435-1441. Zan Yuewen, Yu Maohong, Wangsijing. Nonlinear unified strength criterion of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10):1435-1441. (in Chinese)
[64] 张金铸, 林天健. 三轴试验中岩石的应力状态和破坏性质[J]. 力学学报, 1979(2):99-106. Zhang Jinzhu, Lin Tianjian. Stress conditions and the variation of rupture characteristics of a rock an shown by triaxial tests[J]. Acta Mechanica Sinica, 1979(2):99-106. (in Chinese)
[65] 田军. 经验型岩石强度准则的探讨[J]. 金属矿山, 2001(2):23-25. Tian Jun. Discussion on the experimental rock strength criterion[J]. Metal Mine, 2001(2):23-25. (in Chinese)
[66] 尹光志, 李贺, 鲜学福, 等. 工程应力变化对岩石强度特性影响的试验研究[J]. 岩土工程学报, 1987, 9(2):20-28. Yin Guangzhi, Li He, Xian Xuefu, et al. The experimental study of the influence of engineering stress changes on strength characteristics of rocks[J]. Chinese Journal of Geotechnical Engineering, 1987, 9(2):20-28. (in Chinese)
[67] 高延法, 陶振宇. 岩石强度准则的真三轴压力试验检验与分析[J]. 岩土工程学报, 1993, 15(4):26-32. Gao Yanfa, Tao Zhenyu. Examination and analysis of true triaxial compression testing of strength criteria of rock[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(4):26-32. (in Chinese)
[68] Jiang H. A failure criterion for rocks and concrete based on the Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95:62-72.
[69] Haimson B, Chang C. True triaxial strength and deformability of the German continental deep drilling program (KTB) deep hole amphibolite[J]. Journal of Geophysical Research, 2000, 105:18999-19013.
[70] Haimson B, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37:285-296.
[71] Jaeger J C, Cook N. Fundamentals of Rock Mechanics[M]. 3rd ed. London:Chapman and Hall, 1979.
[72] Hoek E. Practical rock engineering[EB/OL]. https://www.rocscience.com/assets/resources/learning/hoek/PracticalRock-Engineering-Full-Text.pdf, 2007.
[1] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.
[2] 王丽萍, 罗文文, 刘思危, 张伟, 蒋利成, 杨仕建. 考虑梁轴向约束效应的RC梁柱节点受力机理及抗震性能试验研究[J]. 工程力学, 2020, 37(2): 159-167,191.
[3] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201-210.
[4] 时旭东, 汪文强, 田佳伦. 不同强度等级混凝土遭受超低温冻融循环作用的受压强度试验研究[J]. 工程力学, 2020, 37(2): 211-220,240.
[5] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34-43.
[6] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[7] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[8] 沈凯仁, 陈先华, 周杰, 张含宇. 基于半解析有限元的水泥路面荷载响应分析[J]. 工程力学, 2020, 37(2): 134-144.
[9] 初明进, 刘继良, 侯建群, 任宝双. 带竖向接缝的空心模剪力墙受剪性能试验研究及承载力计算[J]. 工程力学, 2020, 37(1): 183-194.
[10] 俞鑫炉, 付应乾, 董新龙, 周风华, 宁建国, 徐纪鹏. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1): 80-87.
[11] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63-72.
[12] 金浏, 王涛, 杜修力, 夏海. 钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究[J]. 工程力学, 2020, 37(1): 53-62.
[13] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[14] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[15] 隋䶮, 薛建阳, 董金爽, 张锡成, 谢启芳, 白福玉. 附设粘滞阻尼器的混凝土仿古建筑梁-柱节点恢复力模型试验研究[J]. 工程力学, 2019, 36(S1): 44-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄斌;史文海. 随机结构弹性屈曲的递推求解方法[J]. 工程力学, 2006, 23(8): 36 -41 .
[2] 张春巍;欧进萍;. 结构振动AMD控制系统主动控制力特征指标与分析[J]. 工程力学, 2007, 24(5): 0 -009 .
[3] 崔京浩. 灾害的严重性及土木工程在防灾减灾中的重要性①[J]. 工程力学, 2006, 23(增刊Ⅱ): 0 -077 .
[4] 喻 莹;罗尧治. 基于有限质点法的结构屈曲行为分析[J]. 工程力学, 2009, 26(10): 23 -029 .
[5] 钮 鹏;杨 刚;金春福;范颖芳;宫本奇. 碳纤维增强H型压弯钢柱弹塑性失稳分析[J]. 工程力学, 2010, 27(增刊I): 85 -089 .
[6] 李云良;鲁明宇;谭惠丰;谭忆秋. 基于直接扰动法的薄膜屈曲缺陷敏感性分析[J]. 工程力学, 2010, 27(8): 94 -099 .
[7] 吕大刚;贾明明. 钢框架结构基于变形可靠度的全概率抗震设计[J]. 工程力学, 2011, 28(5): 117 -123 .
[8] 孙建鹏;李青宁. 压杆弹性屈曲分析的精细传递矩阵法[J]. 工程力学, 2011, 28(7): 26 -030 .
[9] 刘长虹;陈虬. 模糊随机结构屈曲问题的区间有限元法[J]. 工程力学, 2004, 21(1): 52 -55 .
[10] 郭彦林. 材料和几何线性的有限条分析[J]. 工程力学, 1991, 8(3): 55 -68 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日