工程力学 ›› 2020, Vol. 37 ›› Issue (1): 1-16.doi: 10.6052/j.issn.1000-4750.2019.05.ST06

• 综述 •    下一篇

结构减隔震控制系统性能监测、评估与提升

朱宏平1, 沈文爱1, 雷鹰2, 袁涌1, 胡宇航1, 张莹1   

  1. 1. 华中科技大学土木工程与力学学院, 武汉 430074;
    2. 厦门大学建筑与土木工程学院, 厦门 361005
  • 收稿日期:2019-05-28 修回日期:2019-11-13 出版日期:2020-01-29 发布日期:2019-12-20
  • 通讯作者: 朱宏平(1965-),男,湖北人,教授,博士,博导,院长,主要从事结构健康与振动控制研究(E-mail:hpzhu@hust.edu.cn). E-mail:hpzhu@hust.edu.cn
  • 作者简介:沈文爱(1983-),男,广西人,副教授,博士,主要从事结构振动控制研究(E-mail:wshen@hust.edu.cn);雷鹰(1966-),男,福建人,教授,博士,博导,主要从事结构健康监测与振动控制研究(E-mail:ylei@xmu.edu.cn);袁涌(1976-),男,福建人,教授,博士,博导,主要从事结构减隔震研究(E-mail:yuanyong@hust.edu.cn);胡宇航(1995-),男,浙江人,硕士生,主要从事结构振动控制研究(E-mail:yhhu@hust.edu.cn);张莹(1993-),女,湖北人,博士生,主要从事结构健康监测研究(E-mail:zy_199306@hust.edu.cn).
  • 基金资助:
    国家自然科学基金重点项目(51838006)

PERFORMANCE MONITORING, EVALUATION, AND IMPROVEMENT OF STRUCTURAL VIBRATION MITIGATION OR ISOLATION SYSTEMS

ZHU Hong-ping1, SHEN Wen-ai1, LEI Ying2, YUAN Yong1, HU Yu-hang1, ZHANG Ying1   

  1. 1. School of Civil Engineering and Mechanics, Huazhong University of Science & Technology, Wuhan 430074, China;
    2. School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China
  • Received:2019-05-28 Revised:2019-11-13 Online:2020-01-29 Published:2019-12-20

摘要: 地震、风载等灾害荷载作用下,被动振动控制系统耗散了大量的结构振动能量,是最容易破坏的结构关键、敏感部位。由于自身材料为各向异性、多介质耦合、强非线性,因此在复杂时空环境、多因素、多载荷耦合作用下,被动振动控制系统损伤呈现多尺度、多类型特征。该文以叠层橡胶隔震支座和磁流变阻尼器为研究对象,全面综述了当前国内外对这两种结构减隔震系统的性能监测与损伤识别、性能演化与可靠性评估、自适应自供能特性三方面的研究现状,并总结了该研究方面存在的不足,为结构减隔震控制系统性能监测、评估与提升的进一步研究提供了参考。

关键词: 叠层橡胶隔震支座, 磁流变阻尼器, 性能监测, 损伤识别, 性能演化, 自供能自适应控制

Abstract: Passive vibration control systems, as the key and sensitive components of structures, dissipate a great amount of structural vibration energy under hazard loads such as earthquakes and strong winds, etc. The performance of passive control systems degrades in service due to long-term loading and environmental effects. The materials of the passive control systems are characterized as anisotropic, multiple medium coupling and strong nonlinear features, resulting in multi-scale and multiple damages under complex spatio-temporal and coupled loading conditions. Literature review regarding performance monitoring and damage identification, performance evolution and reliability evaluation, self-powered and adaptive features of laminated rubber isolation bearings and magnetorheological (MR) dampers are comprehensively presented. The paper also summarizes the shortcomings of current research, and provides a guideline for further research work of structural vibration control systems, including performance monitoring, evaluation, and development.

Key words: laminated rubber isolation bearing, magnetorheological damper, performance monitoring, damage detection, performance evolution, self-powered and adaptive control

中图分类号: 

  • TU352.12
[1] Chang C H. Modeling of laminated rubber bearings using an analytical stiffness matrix[J]. International Journal Of Solids and Structures, 2002, 39(24):6055-6078.
[2] Ding L, Zhu H P, Wu L. Analysis of mechanical properties of laminated rubber bearings based on transfer matrix method[J]. Composite Structures, 2017, 159:390-396.
[3] Takaoka E. Nonlinear mechanical model for laminated rubber bearings subjected to monotonic loading based on Haringx's theory[J]. Journal of Structural and Construction Engineering, 2014, 79(701):913-921.
[4] 朱宏平, 唐家祥. 叠层橡胶隔震支座的振动传递特性[J]. 工程力学, 1995, 12(4):109-114. Zhu Hongping, Tang Jiaxiang. Vibrational transmission characteristics of laminated rubber bearing[J] Engineering Mechanics, 1995, 12(4):109-114. (in Chinese)
[5] 邓蓉. 东阳沟4号大桥劣化评定[J]. 钢结构, 2015, 30(6):27-29. Deng Rong. Degradation assessment of Dongyanggou No.4 bridge[J]. Steel Construction, 2015, 30(6):27-29. (in Chinese)
[6] TB/T 2820.2-1997, 铁路桥隧建筑物劣化评定标准-隧道[S]. 北京:中国标准出版社, 1997. TB/T 2820.2-1997. Railway bridge and tunnel building degradation assessment standard-tunnel[S]. Beijing:Standards Press of China, 1997. (in Chinese)
[7] 王建军, 陶俊, 邬晓光. 支座损伤等级标准评估及更换研究[J]. 城市道桥与防洪, 2015(1):75-77. Wang Jianjun, Tao Jun, Wu Xiaoguang. Assessment of bearing damage grading standard and study of its replacement[J]. Urban Roads Bridges & Flood Control, 2015(1):75-77. (in Chinese)
[8] 邬晓光, 贺书磊, 郑鹏, 等. 公路桥梁板式橡胶支座失效标准研究[J]. 郑州大学学报(工学版), 2019, 40(1):67-71. Wu Xiaoguang, He Shulei, Zheng Peng, et al. Study on failure standard of highway bridge rubber bearing[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(1):67-71. (in Chinese)
[9] Burtscher S L, Dorfmann A. Compression and shear tests of anisotropic high damping rubber bearings[J]. Engineering Structures, 2004, 26:1979-1991.
[10] Casciati F, Faravelli L. Experimental investigation on the aging of the base isolator elastomeric component[J]. Acta Mechanica, 2012, 223:1633-1643.
[11] Kawasaki Y, Teramura N, Nozaka K, et al. Health monitoring of rubber bearing by using acoustic emission test[C]. Iabse Symposium Report, 2015, 103(2):228-233.
[12] 范雁, 张季超, 许勇. 广东科学中心E区隔震支座监测预警指标研究与应用[J]. 工程力学, 2010, 27(增刊1):103-107. Fan Yan, Zhang Jichao, Xu Yong. Study and application of the early-warming index for isolation bearings monitoring in Guangdong science center E area[J]. Engineering Mechanics, 2010, 27(Suppl 1):103-107. (in Chinese)
[13] 王可怡, 姬蕾, 范雁, 等. 广东科学中心隔震支座施工变形及健康监测[J]. 施工技术, 2011, 40(14):106-109. Wang Keyi, Ji Lei, Fan Yan, et al. Construction deformation and health monitoring for isolation bearings in Guangdong science center[J]. Construction Technology, 2011, 40(14):106-109. (in Chinese)
[14] 朱文正, 张季超. 基于智能传感技术的广东科学中心隔震系统实时监测研究[J]. 土木工程学报, 2014, 47(5):40-45. Zhu Wenzheng, Zhang Jichao. Real time monitoring of isolation system of Guangdong science center based on intelligent sensor technology[J]. China Civil Engineering Journal, 2014, 47(5):40-45. (in Chinese)
[15] 李万润, 郑文智, 杜永峰, 等. 基础隔震结构健康监测系统的设计与实现(Ⅰ):系统设计[J]. 地震工程学报, 2016, 38(1):94-102. Li Wangrun, Zheng Wenzhi, Du Yongfeng, et al. Design and implement of structural health monitoring system for base-isolated structure ():system design[J]. Ⅰ China Earthquake Engineering Journal, 2016, 38(1):94-102. (in Chinese)
[16] 杜永峰, 郑文智, 李万润, 等. 基础隔震结构健康监测系统的设计与实现(Ⅱ):系统实现[J]. 地震工程学报, 2016, 38(3):344-352. Du Yongfeng, Zheng Wenzhi, Li Wanrun, et al. Design and implement of structural health monitoring system for base-isolated structure ():system Ⅱ implement[J]. China Earthquake Engineering Journal, 2016, 38(3):344-352. (in Chinese)
[17] 杜永峰, 郑文智, 李万润, 等. 超长复杂基础隔震结构静动力特性温度相关性研究[J]. 工程力学, 2017, 34(7):69-78. Du Yongfeng, Zheng Wenzhi, Li Wanrun, et al. Study on the dependency of static and dynamic characteristics with environmental temperature for long irregular base-isolated structures[J]. Engineering Mechanics, 2017, 34(7):69-78. (in Chinese)
[18] 战家旺, 夏禾, 张楠, 等. 一种基于冲击振动响应分析的桥梁橡胶支座病害诊断方法[J]. 振动与冲击, 2013, 32(8):153-157. Zhan Jiawang, Xia He, Zhang Nan, et al. A diagnosis method for bridge rubber support disease based on impact responses[J]. Journal of Vibration and Shock, 2013,32(8):153-157. (in Chinese)
[19] Bedon C, Morassi A. Dynamic testing and parameter identification of a base-isolated bridge[J]. Engineering Structures, 2014, 60:85-99.
[20] Chisari C, Bedon C, Amadio C. Dynamic and static identification of base-isolated bridges using genetic algorithms[J]. Engineering Structures, 2015, 102:80-92.
[21] Nagarajaiah S, Dharap P. Reduced order observer based identification of base isolated buildings[J]. Earthquake Engineering and Engineering Vibration, 2003, 2(4):237-244.
[22] Nagarajaiah S, Li Z. Time segmented least squares identification of base isolated buildings[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(8):577-586.
[23] Yoshimoto R, Mita A, Okada K. Damage detection of base-isolated buildings using multi-input multi-output subspace identification[J]. Earthquake Engineering Structural Dynamics, 2005, 34(3):307-324.
[24] Huang M C, Wang Y P, Chang J R, et al. Physical system identification of an isolated bridge using seismic response data[J]. Structural Control and Health Monitoring, 2009, 16(2):241-265.
[25] Huang M C, Wang Y P, Chang J R, et al. Physical parameter identification of base-isolated buildings using backbone curves[J]. Journal of Structural Engineering, 2009, 135(9):1107-1114.
[26] Furukawa T, Ito M, Izawa K, et al. System identification of base-isolated building using seismic response data[J]. Journal of Engineering Mechanics, 2005, 131(3):268-275.
[27] Ahn I S, Chen S S. Nonlinear model-based system identification of lead-rubber bearings[J]. Journal of Structural Engineering, 2008, 134(2):318-328.
[28] Yin Q, Zhou L, Wang X M. Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3):375-383.
[29] 尹强, 周丽. 基于EKF方法的橡胶隔震支座参数识别实验研究[J]. 南京航空航天大学学报, 2012, 44(1):43-49. Yin Qiang, Zhou Li. Experimental study on parameter identification of non-linear hysteretic rubber-bearing isolators using EKF method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(1):43-49. (in Chinese)
[30] 尹强, 周丽. 基于ASNLSE方法的橡胶隔震结构损伤识别[J]. 振动, 测试与诊断, 2012, 32(5):730-735, 859-860. Yin Qiang, Zhou Li. Damage identification for rubber-bearing isolated structure based on ASNLSE method[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(5):730-735, 859-860. (in Chinese)
[31] Yin Q, Zhou L, Mu T F. Experimental study on damage detection of base-isolated structure using an adaptive extended Kalman filter[J]. Journal of Theoretical and Applied Mechanics, 2013, 51(4):1013-1026.
[32] Yin Q, Zhou L, Yang J N. Damage detection of rubber-bearing isolated building based on AEKF approach[J]. Journal of Vibro Engineering, 2013, 15(2):856-862.
[33] 杜永峰, 赵丽洁, 李万润, 等. 基础隔震结构橡胶支座时变非线性特性识别[J]. 振动、测试与诊断, 2016, 36(1):86-91, 199. Du Yongfeng, Zhao Lijie, Li Wanrun, et al. Identification for time-varying nonlinear properties of rubber-bearing in base-isolated buildings[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(1):86-91, 199. (in Chinese)
[34] 赵丽洁, 杜永峰, 王昊, 等. 基于Bouc-Wen模型橡胶隔震支座的非线性特性识别[J]. 兰州理工大学学报, 2017, 43(1):116-121. Zhao Lijie, Du Yongfeng, Wang Hao, et al. Nonlinear characteristics identification of rubber isolation bearing base on Bouc-Wen model[J]. Journal of Lanzhou University of Technology, 2017, 43(1):116-121. (in Chinese)
[35] Quaranta G, Marano G C, Greco R, et al. Parametric identification of seismic isolators using differential evolution and particle swarm optimization[J]. Applied Soft Computing, 2014, 22:458-464.
[36] 雷鹰, 何明煜, 林树枝. 结构中基底橡胶隔震支座非线性特性的无模型识别[J]. 振动与冲击, 2013, 32(20):1-4, 13. Lei Ying, He Mingyu, Lin Shuzhi. Model-free identification for nonlinear properties of rubber-bearings in base-isolated buildings[J]. Journal of Vibration and Shock, 2013, 32(20):1-4, 13. (in Chinese)
[37] Lei Y, He M Y. Identification of the nonlinear properties of rubber-bearings in base-isolated buildings with limited seismic response data[J]. Science China Technological Sciences, 2013, 56(5):1224-1231.
[38] Xu C, Chase J G, Rodgers G W. Physical parameter identification of nonlinear base-isolated buildings using seismic response data[J]. Computers and Structures, 2014, 145:47-57.
[39] 许斌, 唐家祥. 基础隔震叠层橡胶支座耐久性试验研究[J]. 工程抗震, 1995, 27(4):417-421. Xu Bin, Tang Jiaxiang. Experimental study on durability of base isolation laminated rubber bearing[J]. Earthquake Resistant Engineering, 1995, 27(4):417-421. (in Chinese)
[40] 刘文光, 李峥嵘, 周福霖, 等. 低硬度橡胶隔震支座各种相关性及老化徐变特性[J]. 地震工程与工程振动, 2002, 22(6):115-121. Liu Wenguang, Li Zhengrong, Zhou Fulin, et al. Various dependence and duration properties of low stiffness rubber bearings[J]. Earthquake Engineering and Engineering Dynamics, 2002, 22(6):115-121. (in Chinese)
[41] 刘文光, 庄学真, 周福霖, 等. 中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究[J]. 地震工程与工程振动, 2002, 22(1):114-120. Liu Wenguang, Zhuang Xuezhen, Zhou Fulin, et al. Dependence and durability properties of Chinese lead plug rubber bearings[J]. Earthquake Engineering and Engineering Dynamics, 2002, 22(1):114-120. (in Chinese)
[42] 马玉宏, 李艳敏, 赵桂峰, 等. 基于热老化作用的橡胶隔震支座力学性能时变规律研究[J]. 地震工程与工程振动, 2017, 37(5):38-44. Ma Yuhong, Li Yanmin, Zhao Guifeng, et al. Research on the time-dependent law of mechanical properties for the rubber isolation bearings based on thermal aging effect[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(5):38-44. (in Chinese)
[43] 李艳敏, 马玉宏, 罗佳润. 考虑老化时间影响的隔震支座橡胶本构Mooney-Rivlin模型常数研究[J]. 振动与冲击, 2016, 35(16):164-169. Li Yanmin, Ma Yuhong, Luo Jiarun, et al. The effect of aging on the material constant of the rubber isolator's constitutive model Moony-Rivlin[J]. Journal of Vibration and Shock, 2016, 35(16):164-169. (in Chinese)
[44] 罗佳润, 马玉宏, 崔杰, 等. 基于灰色系统的橡胶隔震支座性能老化预测[J]. 地震研究, 2014, 37(1):111-116. Luo Jiarun, Ma Yuhong, Cui Jie, et al. Prediction on ageing performance of rubber isolation bearing based on gray theory system[J]. Journal of Seismological Research, 2014, 37(1):111-116. (in Chinese)
[45] 顾浩声, 伊藤義人. 天然橡胶隔震支座的内部老化特性及预测方法[J]. 北京工业大学学报, 2012, 38(2):186-193. Gu Haosheng, Itoh Yoshito. Aging inside natural rubber bearings and prediction method[J]. Journal of Beijing University of Technology, 2012, 38(2):186-193. (in Chinese)
[46] Wei W, Yuan Y, Igarashi A, et al. A generalized ratedependent constitutive law for elastomeric bearings[J]. Construction and Building Materials, 2016, 106:693-699.
[47] 朱宏平, 周方圆, 袁涌. 建筑隔震结构研究进展与分析[J]. 工程力学, 2014, 31(3):1-10. Zhu Hongping, Zhou Fangyuan, Yuan Yong. Development and analysis of the research on base isolated structures[J]. Engineering Mechanics, 2014, 31(3):1-10. (in Chinese)
[48] Tsai C, Su H, Chiang T. Equivalent series system to model a multiple friction pendulum system with numerous sliding interfaces for seismic analyses[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(1):85-99.
[49] Loghman V, Khoshnoudian F, Banazadeh M. Effect of vertical component of earthquake on seismic responses of triple concave friction pendulum base-isolated structures[J]. Journal of Vibration and Control, 2015, 21(11):2099-2113.
[50] Tajammolian H, Khoshnoudian F, Loghman V. Rotational components of near-fault earthquakes effects on triple concave friction pendulum base-isolated asymmetric structures[J]. Engineering Structures, 2017, 142:110-127.
[51] Castaldo P, Palazzo B, Della V P. Seismic reliability of base-isolated structures with friction pendulum bearings[J]. Engineering Structures, 2015, 95:80-93.
[52] Castaldo P, Tubaldi E. Influence of FPS bearing properties on the seismic performance of base-isolated structures[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(15):2817-2836.
[53] Lee C H, Kim J, Kim D H, et al. Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniform strip damper for multi-level seismic protection[J]. Engineering Structures, 2016, 114:75-92.
[54] 万信华, 侯辉, 万维东, 等. 环形钢丝绳-叠层橡胶复合减隔震支座力学性能研究[J]. 武汉理工大学学报, 2016, 38(5):64-69. Wan Xinhua, Hou Hui, Wan Weidong, et al. Study on the mechanical properties of the laminated rubber isolation bearing with annular steel wire ropes[J]. Journal of Wuhan University of Technology, 2016, 38(5):64-69. (in Chinese)
[55] 常怀宽. 环形钢丝绳减振器及其组合隔震支座研究[D]. 武汉:华中科技大学, 2017. Chang Huaikuan. Research on ring-shaped steel wire shock absorber and its composite isolation bearing[D]. Wuhan:Huazhong University of Science and Technology, 2017. (in Chinese)
[56] Wu Y F, Wang H, Li A Q, et al. Explicit finite element analysis and experimental verification of a sliding lead rubber bearing[J]. Journal of Zhejiang University-Science A, 2017, 18(5):363-376.
[57] Graesser E, Cozzarelli F. Shape-memory alloys as new materials for aseismic isolation[J]. Journal of Engineering Mechanics, 1991, 117(11):2590-2608.
[58] Dezfuli F H, Alam M S. Shape memory alloy wire-based smart natural rubber bearing[J]. Smart Materials and Structures, 2013, 22(4):045013.
[59] Bhuiyan A R, Alam M S. Seismic performance assessment of highway bridges equipped with superelastic shape memory alloy-based laminated rubber isolation bearing[J]. Engineering Structures, 2013, 49:396-407.
[60] Dezfuli F H, Alam M S. Hysteresis model of shape memory alloy wire-based laminated rubber bearing under compression and unidirectional shear loadings[J]. Smart Materials and Structures, 2015, 24(6):065022.
[61] Dezfuli F H, Li S, Alam M S, et al. Effect of constitutive models on the seismic response of an SMA-LRB isolated highway bridge[J]. Engineering Structures, 2017, 148:113-125.
[62] Behrooz M, Wang X, Gordaninejad F. Seismic control of base isolated structures using novel magnetorheological elastomeric bearings[C]//ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Snowbird, Utah, USA, ASME, 2013:V001T03A027.
[63] Behrooz M, Wang X, Gordaninejad F. Modeling of a new magnetorheological elastomer-based isolator[C]//SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 2013, San Diego, California, United States, SPIE, 2013:86880Z.
[64] Yang J, Sun S, Du H, et al. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction[J]. Smart Materials and Structures, 2014, 23(10):105023.
[65] Yang C, Fu J, Yu M, et al. A new magnetorheological elastomer isolator in shear-compression mixed mode[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(10):1290-1300.
[66] Xing Z W, Yu M, Fu J, et al. A laminated magnetorheological elastomer bearing prototype for seismic mitigation of bridge super structures[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(14):1818-1825.
[67] Li H, Tian S, Dang X, et al. Performance of steel mesh reinforced elastomeric isolation bearing:Experimental study[J]. Construction and Building Materials, 2016, 121:60-68.
[68] 谭平, 王斌, 金建敏, 等. 纤维增强工程塑料板夹层橡胶隔震支座有限元分析[J]. 振动与冲击, 2014, 33(24):95-100. Tan Ping, Wang Bin, Jin Jianmin, et al. Finite element analysis for a fiber-reinforced-plastic plate isolation bearing[J]. Journal of Vibration and Shock, 2014, 33(24):95-100. (in Chinese)
[69] 谭平, 徐凯, 王斌, 等. 基于新型简易隔震支座的村镇建筑隔震性能研究[D]. 广州:广州大学, 2013. Tan Ping, Xu Kai, Wang Bin, et al. Performance study of novel simple isolator and isolation application[D]. Guangzhou:Guangzhou University, 2013. (in Chinese)
[70] 雷拓, 张永旺, 杨永睿, 等. 高阻尼隔震支座复合橡胶材料制备及性能研究[J]. 土木工程学报, 2018, 51(增刊1):1-7. Lei Tuo, Zhang Yongwang, Yang Yongrui, et al. Composite material preparation and properties research of high damping isolation bearing[J]. China Civil Engineering Journal, 2018, 51(Suppl 1):1-7.
[71] Kim D, Oh J, Do J, et al. Effects of thermal aging on mechanical properties of laminated lead and natural rubber bearing[J]. Earthquakes and Structures, 2014, 6(2):127-140.
[72] 李艳敏, 马玉宏, 赵桂峰, 等. 基于海水干湿循环的天然橡胶支座剪应变相关性试验研究[J]. 土木工程学报, 2018, 51(增刊1):26-31. Li Yanmin, Ma Yuhong, Zhao Guifeng, et al. Experimental study on shear-strain dependency of natural rubber bearing under seawater wet-dry cycles[J]. China Civil Engineering Journal, 2018, 51(Suppl 1):26-31. (in Chinese)
[73] Zhao G, Ma Y, Li Y M, et al. Development of a modified Mooney-Rivlin constitutive model for rubber to investigate the effects of aging and marine corrosion on seismic isolated bearings[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(4):815-826.
[74] Yuan Y, Wei W, Tan P, et al. A rate-dependent constitutive model of high damping rubber bearings:modeling and experimental verification[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(11):1875-1892.
[75] Wei W, Yuan Y, Igarashi A, et al. A generalized rate-dependent constitutive law for elastomeric bearings[J]. Construction and Building Materials, 2016, 106:693-699.
[76] 袁涌, 魏威, 谭平. 一种基于改进超弹性Zener模型的高阻尼橡胶隔震支座速度相关性本构模型[J]. 土木工程学报, 2016, 49(3):73-79. Yuan Yong, Wei Wei, Tan Ping. A rate-dependent constitutive model of high damping rubber bearing based on the improved hyperelastic Zener model[J]. China Civil Engineering Journal, 2016, 49(3):73-79. (in Chinese)
[77] 郭永恒, 邓雪松, 周云. 某隔震结构基于多级设防的性能反应分析与目标评价[J]. 土木工程学报, 2010, 43(增刊43):323-328. Guo Yongheng, Deng Xuesong, Zhou Yun. Based multilevel performance analysis and object evaluated of a base isolated building[J]. China Civil Engineering Journal, 2010, 43(Suppl 43):323-328. (in Chinese)
[78] 叶昆, 骆江成, 朱宏平. 面向多级性能设防目标的铅芯橡胶隔震支座基础隔震结构优化设计及分析[J]. 建筑结构学报, 2018, 39(10):37-45. Ye Kun, Luo Jiangcheng, Zhu Hongping. Optimum seismic design and analysis of LRB base-isolated building structures catering to multi-level performance fortification criteria[J]. Journal of Building Structures, 2018, 39(10):37-45. (in Chinese)
[79] Li Y, Li J. On rate-dependent mechanical model for adaptive magnetorheological elastomer base isolator[J]. Smart Materials and Structures, 2017, 26(4):045001.
[80] Malekzadeh M, Taghikhany T. Multi-stage performance of seismically isolated bridge using triple pendulum bearings[J]. Advances in Structural Engineering, 2012, 15(7):1181-1196.
[81] 刘文光, 许浩, 冯祎鑫, 等. 多级性态隔震支座滞回模型和力学性能试验研究[J]. 振动工程学报, 2018, 31(4):582-590. Liu Wenguang, Xu Hao, Feng Yixin, et al. Mechanic properties of high performance multi-level bearing[J]. Journal of Vibration Engineering, 2018, 31(4):582-590. (in Chinese)
[82] 何文福, 许浩, 魏陆顺, 等. 多级性态隔震体系试验研究和结构动力响应分析[J]. 工程力学, 2018, 35(9):107-116. He Wenfu, Xu Hao, Wei Lushun, el al. Experiment research and dynamic response analysis of high performance multi-level bearing[J]. Engineering Mechanics, 2018, 35(9):107-116. (in Chinese)
[83] 王文远, 杨凤, 高瑞横, 等. 基于天然橡胶的自修复弹性体材料的合成及性能研究[J]. 化工新型材料, 2019(4):53-57. Wang Wenyuan, Yang Feng, Gao Ruiheng, et al. Synthesis and property of self-healing elastomer based on NR[J]. New Chemical Materials, 2019(4):53-57. (in Chinese)
[84] Wu J, Cai L H, Weitz D A. Tough self-healing elastomers by molecular enforced integration of covalent and reversible networks[J]. Advanced Materials, 2017, 29(38):1702616.
[85] Iyengar V R, Alexandridis A A, Tung S C, et al. Wear testing of seals in magneto-rheological fluids[J]. Tribology Transactions, 2004, 47(1):23-28.
[86] Ulicny J C, Balogh M P, Potter N M, et al. Magnetorheological fluid durability test-Iron analysis[J]. Materials Science and Engineering:A, 2007, 443(1):16-24.
[87] 李宏男, 杨浩. 磁流变阻尼器参数化动力学模型研究进展[J]. 大连理工大学学报, 2004, 24(4):619-624. Li Hongnan, Yang Hao. Advances of research on parameterized dynamic models of magnetorheological dampers[J]. Journal of Dalian University of Technology, 2004, 24(4):619-624. (in Chinese)
[88] Khalid M, Yusof R, Joshani M, et al. Nonlinear identification of a magneto-rheological damper based on dynamic neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(3):221-233.
[89] Talatahari S, Kaveh A, Rahbari N M. Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization[J]. Journal of Mechanical Science and Technology, 2012, 26(8):2523-2534.
[90] Masri S F, Tasbihgoo F. Caffery J P. Data-based model-freer representation of complex hysteretic MDOF systems[J]. Structural Control & Health Monitoring, 2006, 13:365-387.
[91] Ni Y Q, Ko J M, Wong C W. Nonparametric identification of nonlinear hysteretic systems[J]. Journal of Engineering Mechanics, 1999, 125(2):206-216.
[92] Xu B, He J, Masri S F. Data-based model-free hysteretic restoring force and mass identification for dynamic systems[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(1):2-18.
[93] Xu B, He J, Masri S F. Data-based identification of nonlinear restoring force under spatially incomplete excitations with power series polynomial model[J]. Nonlinear Dynamics, 2012, 67(3):2063-2080.
[94] Lei Y, Luo S J, He M Y. Identification of model-free structural nonlinear restoring forces using partial measurements of structural responses[J]. Advances in Structural Engineering, 2017, 20(1):69-80.
[95] Liu L, Lei Y, He M. Locating and identifying model-free structural nonlinearities and systems using incomplete measured structural responses[J]. Smart Structures and Systems, 2015, 15(2):409-424.
[96] He J, Chen J, He X, et al. Deep reinforcement learning with a natural language action space[J]. ArXiv Preprint, ArXiv:1511.04636, 2015.
[97] Cha K H, Hadjiiski L, Samala R K, et al. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets[J]. Medical Physics, 2016, 43(4):1882-1896.
[98] Soukup D, Huber-Mörk R. Convolutional neural networks for steel surface defect detection from photometric stereo images[J]. Las Vegas, NV, USA:International Symposium on Visual Computing, Springer International Publishing, 2014(12):668-677.
[99] 刘宇飞. 基于模型修正与图像处理的多尺度结构损伤识别[D]. 北京:清华大学, 2015. Liu Yufei. Multi-scale structural damage assessment based on model updating and image processing[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[100] 刘俊鹏, 董旭峰, 赵红, 等. 基于中空钴微米颗粒的磁流变液性能研究[J]. 功能材料, 2013, 18(44):2641-2644. Liu Junpeng, Dong Xufeng, Zhao Hong, et al. Properties of magneto-rheological fluids based on hollow cobalt micro-particles[J]. Journal of Functional Material, 2013, 18(44):2641-2644. (in Chinese)
[101] De Vicente J, Klingenberg D J, Hidalgo-Alvarez R. Magnetorheological fluids:A review[J]. Soft Matter, 2011, 7(8):3701-3710.
[102] Guerrero-Sanchez C, Lara-Ceniceros T, JimenezRegalado E, et al. Magnetorheological fluids based on ionic liquids[J]. Advanced Materials, 2007, 19(13):1740-1747.
[103] 陈伟俊, 马平. 磁流变液的抗沉淀分析[J]. 机床与液压, 2007, 35(10):98-100. Chen Weijun, Ma Ping. The study of the anti-precipitation of the magnetorheological fluid[J]. Machine Tool & Hydraulics, 2007, 35(10):98-100. (in Chinese)
[104] Wereley N M, Chaudhuri A, Yoo J H, et al. Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale[J]. Journal of Intelligent Material Systems and Structures, 2006, 17(5):393-401.
[105] Cao Z, Jiang W, Ye X, et al. Preparation of superparamagnetic Fe3O4/PMMA nano composites and their magnetorheological characteristics[J]. Journal of Magnetism and Magnetic Materials, 2008, 320(8):1499-1502.
[106] Park B J, Song K H, Choi H J. Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics[J]. Materials Letters, 2009, 63(15):1350-1352.
[107] Kormann C, Laun H M, Richter H J. MR fluids with nano-sized magnetic particles[J]. International Journal of Modern Physics B, 1996, 10(23&24):3167-3172.
[108] Rosenfeld N, Wereley N M, Radakrishnan R, et al. Behavior of magnetorheological fluids utilizing nanopowder iron[J]. International Journal of Modern Physics B, 2002, 16(17):2392-2398.
[109] 陈伟俊, 马平. 磁流变液的抗沉淀分析[J]. 机床与液压, 2007, 35(10):98-100. Chen Weijun, Ma Ping. The study of the antiprecipitation of the magnetorheological fluid[J]. Machine Tool & Hydraulics, 2007, 35(10):98-100. (in Chinese)
[110] 刘俊鹏, 董旭峰, 赵红, 等. 基于中空钴微米颗粒的磁流变液性能研究[J]. 功能材料, 2013, 18(44):2641-2644. Liu Junpeng, Dong Xufeng, Zhao Hong, et al. Properties of magneto-rheological fluids based on hollow cobalt micro-particles[J]. Journal of Functional Material, 2013, 18(44):2641-2644. (in Chinese)
[111] Hsuan Y G, Koerner R M. Aging of geomembranes used in hydraulic structures[J]. Geotechnical Special Publication, 2008(130):1-7.
[112] Le Gac P Y, Le Saux V, Paris M, et al. Ageing mechanism and mechanical degradation behaviour of polychloroprene rubber in a marine environment:Comparison of accelerated ageing and long term exposure[J]. Polymer Degradation and Stability, 2012, 97(3):288-296.
[113] Patel M, Skinner A R. Thermal ageing studies on room-temperature vulcanised polysiloxane rubbers[J]. Polymer Degradation and Stability, 2001, 73(3):399-402.
[114] 李咏今. 丁腈硫化胶烘箱加速老化与室内自然老化相关性的研究[J]. 特种橡胶制品, 2001, 22(4):51-56. Li Yongjin. Study on the correlation of oven accelerated aging and room temperature auto age for NBR[J]. Special Purpose Rubber Products, 2001, 22(4):51-56. (in Chinese)
[115] 李咏今. 利用时间外延法预测硫化胶常温老化应力松弛和永久变形性能的研究[J]. 橡胶工业, 2002, 49(10):615-622. Li Yongjin. Prediction of stress relaxation and permanent deformation of vulcanization at room temperature by time epitaxy[J]. China Rubber Industry, 2002, 49(10):615-622. (in Chinese)
[116] Rivlin R S, Thomas A G. Rupture of rubber. I. Characteristic energy for tearing[J]. Journal of Polymer Science, 1953, 10(3):291-318.
[117] Lake G J. Mechanical fatigue of rubber[J]. Rubber Chemistry and Technology, 1972, 45(1):309-328.
[118] Devries K L. Fracture mechanics of polymers[J]. Polymer Engineering & Science, 1977, 17(3):144-149.
[119] Beurrot-Borgarino S, Huneau B, Verron E, et al. Strain-induced crystallization of carbon black-filled natural rubber during fatigue measured by in situ synchrotron X-ray diffraction[J]. International Journal of fatigue, 2013, 47:1-7.
[120] White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822):794.
[121] 刘明远. 基于光伏发电系统的磁流变阻尼器电源研究[D]. 北京:北方工业大学, 2017. Liu Mingyuan. Research on power supply of MR damper based on photovoltaic power generation system[D]. Beijing:North China University of Technology, 2017. (in Chinese)
[122] 王继平. MR阻尼器的太阳能供能控制系统研究[D]. 南京:南京林业大学, 2017. Wang Jiping. Research on control system of solar energy supply for MR damper[J]. Nanjing:Nanjing Forestry University, 2017. (in Chinese)
[123] 曹景军. 压电智能结构振动半主动控制研究[D]. 西安:西北工业大学, 2016. Cao Jingjun. The study of the semi-active vibration control of piezoelectrics smart structures[D]. Xi'an:Northwestern Polytechnical University, 2016. (in Chinese)
[124] 蒋学争. 自供能磁流变阻尼器的振动能量捕获技术研究[D]. 南京:南京理工大学, 2012. Jiang Xuezheng. Research on vibration energy capture technology of self-powered magnetorheological damper[D]. Nanjing:Nanjing University of Science and Technology, 2012. (in Chinese)
[125] 黄永虎. 自感知自供能磁流变阻尼器及其控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2015. Huang Yonghu. Research on self-sensing and selfpowered MR damper and its control system[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
[126] Cho S W, Jung H J, Lee I W. Smart passive system based on magnetorheological damper[J]. Smart Materials and Structures, 2005, 14(4):707-714.
[127] Choi K M, Jung H J, Cho S W, et al. Application of smart passive damping system using MR damper to highway bridge structure[J]. Journal of Mechanical Science and Technology, 2007, 21(6):870-874.
[128] Jung H J, Jang D D, Lee H J, et al. Feasibility test of adaptive passive control system using MR fluid damper with electromagnetic induction part[J]. Journal of Engineering Mechanics, 2010, 136(2):254-259.
[129] Choi Y T, Wereley N M. Self-powered magnetorheological dampers[J]. Journal of Vibration and Acoustics, 2009, 131(4):044501.1-044501.5.
[130] Sapiński B. Vibration power generator for a linear MR damper[J]. Smart Materials and Structures, 2010, 19(10):105012.1-105012.12.
[131] Sapiński B. Energy-harvesting linear MR damper:Prototyping and testing[J]. Smart Materials and Structures, 2014, 23(3):035021.1-035021.15.
[132] Sapiński B, Rosół M, Węgrzynowski M. Investigation of an energy harvesting MR damper in a vibration control system[J]. Smart Materials and Structures, 2016, 25(12):125017.1-125017.15.
[133] Chen C, Liao W H. A self-powered, self-sensing magnetorheological damper[C]//2010 IEEE International Conference on Mechatronics and Automation, Xi'an:IEEE, 2010:1364-1369.
[134] Chen C, Liao W H. A self-sensing magnetorheological damper with power generation[J]. Smart Materials and Structures, 2012, 21(2):025014.1-025014.14.
[135] Gupta A, Jendrzejczyk J A, Mulcahy T M, et al. Design of electromagnetic shock absorbers[J]. International Journal of Mechanics and Materials in Design, 2006, 3(3):285-291.
[136] Wang Z H, Chen Z, Spencer B F. Self-powered and sensing control system based on MR damper:Presentation and application[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009. San Diego, California, United States:International Society for Optics and Photonics, 2009, 7292:729240.1-729240.10.
[137] 孔伟明. 电磁自集能与速度自感知磁流变阻尼器研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Kong Weiming. The research on MR dampers with self-powered and self-sensing ability[D]. Harbin:Harbin Institute of Technology, 2013. (in Chinese)
[138] 汪志昊, 陈政清. 基于振动能量回收的自供电MR阻尼器集成与试验研究[J]. 振动与冲击, 2013, 32(12):88-94. Wang Zhihao, Chen Zhengqing. Integration and test for a self-powered MR damper based on vibrational energy harvesting[J]. Journal of Vibration and Shock, 2013, 32(12):88-94. (in Chinese)
[139] 彭少俊. 自供电自传感磁流变减振器研究[D]. 重庆:重庆大学, 2016. Peng Shaojun. Research on self-powered and self-sensing MR damper[D]. Chongqing:Chongqing University, 2016. (in Chinese)
[1] 彭长乐, 陈城, 侯和涛. 磁流变阻尼器MNS模型参数不确定性分析[J]. 工程力学, 2020, 37(1): 175-182.
[2] 白鲁帅, 李钢, 靳永强, 李宏男. 一种隔离损伤的桁架结构性态识别方法[J]. 工程力学, 2019, 36(1): 53-60.
[3] 颜王吉, 王朋朋, 孙倩, 任伟新. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 1-9,26.
[4] 许斌, 王云. 利用部分加速度测量的结构滞回特性免模型识别[J]. 工程力学, 2018, 35(2): 180-187.
[5] 张纯, 陈林, 宋固全, 田福志. 基于l1正则化无迹卡尔曼滤波的结构损伤方法[J]. 工程力学, 2017, 34(8): 76-84.
[6] 刁延松, 曹亚东, 孙玉婷. 环境变化下基于AR模型系数和协整的海洋平台结构损伤识别[J]. 工程力学, 2017, 34(2): 179-188.
[7] 刘纲, 李坤, 王茜, 李立力. 基于Info-gap理论的结构损伤识别方法研究[J]. 工程力学, 2016, 33(增刊): 257-261.
[8] 张香成, 何尚文, 李倩, 徐赵东. 铅-磁流变阻尼器的试验及计算模型[J]. 工程力学, 2016, 33(10): 123-128.
[9] 蒋运忠, 周云, 谢利民. 基于应用程序交互访问技术的桥梁有限元模型修正研究[J]. 工程力学, 2015, 32(9): 174-182.
[10] 何浩祥, 吕永伟, 韩恩圳. 基于静动力凝聚及扩展卡尔曼滤波的连续梁桥损伤识别[J]. 工程力学, 2015, 32(7): 156-163.
[11] 孙晓丹, 侯钢领, 王月敏, 陈强. 基于灵敏度的平板结构多类型传感器优化布置[J]. 工程力学, 2015, 32(4): 77-84.
[12] 孙宗光, 陈一飞, 邵元, 石健, 栗燕娜. 基于模型试验的悬索桥结构损伤识别研究[J]. 工程力学, 2014, 31(6): 132-137.
[13] 彭剑,赵珧冰,孙测世,王连华. 磁流变阻尼器—斜拉索控制系统中的时滞效应[J]. 工程力学, 2014, 31(4): 155-159.
[14] 王利恒. 基于应变信号的复合材料层合板低速冲击损伤识别研究[J]. 工程力学, 2014, 31(2): 230-236.
[15] 许斌, 辛璐璐, 贺佳. 基于切比雪夫多项式模型的多自由度结构非线性恢复力时域识别[J]. 工程力学, 2014, 31(11): 99-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 丰;李宏男;高云莉. 多层偏心结构直接基于位移的抗震设计方法[J]. 工程力学, 2009, 26(8): 82 -087 .
[2] 吕大刚;贾明明. 钢框架结构基于变形可靠度的全概率抗震设计[J]. 工程力学, 2011, 28(5): 117 -123 .
[3] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1 -12 .
[4] 潘天林,吴斌,郭丽娜,陈永盛. 能量守恒逐步积分方法在工程结构动力分析中的应用[J]. 工程力学, 2014, 31(9): 21 -27 .
[5] 楚留声, 刘静, 王伸伟, 赵军. SRC柱-钢梁混合框架直接基于位移的抗震设计方法研究[J]. 工程力学, 2018, 35(8): 100 -110 .
[6] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[7] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[8] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 -11,24 .
[9] 邓明科, 李琦琦, 刘海勃, 景武斌. 高延性混凝土低矮剪力墙抗震性能试验研究及抗剪承载力计算[J]. 工程力学, 2020, 37(1): 63 -72 .
[10] 于晓辉, 乔雨蒙, 代旷宇, 陶静, 吕大刚. 主余震序列作用下非线性单自由度体系的增量损伤分析[J]. 工程力学, 2019, 36(3): 121 -130 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日