工程力学 ›› 2020, Vol. 37 ›› Issue (3): 1-7.doi: 10.6052/j.issn.1000-4750.2019.05.ST05

• 综述 •    下一篇

非连续变形分析的若干问题

凌道盛1,2,3, 巩师林1,2, 胡成宝1,2, 钮家军1,2   

  1. 1. 浙江大学岩土工程研究所, 浙江, 杭州 310058;
    2. 浙江大学软弱土与环境土工教育部重点实验室, 浙江, 杭州 310058;
    3. 浙江大学宁波理工学院土木建筑工程学院, 浙江, 宁波 315100
  • 收稿日期:2019-05-25 修回日期:2019-11-11 出版日期:2020-03-25 发布日期:2019-12-20
  • 通讯作者: 凌道盛(1968-),男,安徽黄山人,教授,博士,博导,主要从事计算土力学与实验土力学的研究(E-mail:dsling@zju.edu.cn). E-mail:dsling@zju.edu.cn
  • 作者简介:巩师林(1993-),男,江苏徐州人,博士生,主要从事岩石力学与非连续变形分析研究(E-mail:slgong@zju.edu.cn);胡成宝(1990-),男,山东菏泽人,博士生,主要从事计算土力学与土动力学研究(E-mail:11412027@zju.edu.cn);钮家军(1993-),男,江苏淮安人,博士生,主要从事土力学热固结研究(E-mail:11612020@zju.edu.cn).
  • 基金资助:
    国家重点研发计划项目(2016YFC0800200);国家自然科学基金项目(51578502)

SOME ISSUES IN DISCONTINUOUS DEFORMATION ANALYSIS

LING Dao-sheng1,2,3, GONG Shi-lin1,2, HU Cheng-bao1,2, NIU Jia-jun1,2   

  1. 1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China;
    2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
    3. School of Civil Engineering and Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
  • Received:2019-05-25 Revised:2019-11-11 Online:2020-03-25 Published:2019-12-20

摘要: 基于加法分解及其线性化后的位移增量表达式在更新块体构型时,常导致常规非连续变形分析块体应变计算精度低、块体体积虚假膨胀。根据原始DDA位移模式,分析了该位移模式中因对转?增量1阶近似导致的块体体积自由膨胀;应变分量增量直接叠加导致的块体应变场畸变;以及采用加法分解线性化后的位移增量公式推导块体加速度表达式导致的忽略块体转动时的离心力与科氏力。数值算例表明,原始DDA的位移模式直接导致块体体积自由膨胀、块体内应变场畸变以及忽略了块体转动时离心力与科氏力产生的应变。

关键词: 非连续变形分析(DDA), 一阶近似, 体积膨胀, 应变场畸变, 离心力, 科氏力

Abstract: Updating block configuration based on additive decomposition and its linearized expression of displacement increment lead to the low calculation accuracy of the original discontinuous deformation analysis (DDA) and the false volume expansion. Based on the displacement formulation of the original DDA, the false volume expansion caused by the first order approximation of rotation angle, the strain distortion caused by the direct addition of the incremental strain components, and the neglect of centrifugal force and Coriolis force caused by the derivation of acceleration expression of the block by using the incremental displacement formula after linearization were investigated. The numerical examples show that the displacement formulation of the original DDA directly results in the false volume expansion, the strain distortion and the neglect of the strains produced by the centrifugal force and Coriolis force when the block rotates.

Key words: discontinuous deformation analysis, first order approximation, volume expansion, strain distortion, centrifugal force, Coriolis force

中图分类号: 

  • TU43
[1] Shi Genhua. Discontinuous deformation analysis-A new numerical model for the statics and dynamics of block systems[D]. Berkeley:University of California, 1988.
[2] Shi Genhua, Goodman R E. Generalization of twodimensional discontinuous deformation analysis for forward modeling[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1989, 13(4):359-380.
[3] MacLaughlin M M, Doolin D M. Review of validation of the discontinuous deformation analysis (DDA) method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(4):271-305.
[4] Ning Y J, Zhao Z Y. A detailed investigation of block dynamic sliding by the discontinuous deformation analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(15):2373-2393.
[5] 付晓东, 盛谦, 张勇慧. 水电站地下洞室群分步开挖的非连续变形分析[J]. 岩土力学, 2013, 34(2):568-574. Fu Xiaodong, Sheng Qian, Zhang Yonghui. Stepwise excavation process of underground caverns of hydropower station using DDA[J]. Rock and Soil Mechanics, 2013, 34(2):568-574. (in Chinese)
[6] Mortazavi A, Katsabanis P D. Modeling burden size and strata dip effects on the surface blasting process[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38:481-498.
[7] 邬爱清, 丁秀丽, 李会中, 等. 非连续变形分析方法模拟千将坪滑坡启动与滑坡全过程[J]. 岩石力学与工程学报, 2006(7):1297-1303. Wu Aiqing, Ding Xiuli, Li Huizhong, et al. Numerical simulation of startup and whole failure process of Qianjiangping landslide using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006(7):1297-1303. (in Chinese)
[8] Chen G Q, Zheng L, Zhang Y B, et al. Numerical simulation in rockfall analysis:A close comparison of 2-D and 3-D DDA[J]. Rock Mechanics and Rock Engineering, 2013, 46(3):527-541.
[9] 甯尤军, 杨军, 陈鹏万. DDA方法中的两种无反射边界研究[J]. 工程力学, 2010, 27(4):19-23. Ning Youjun, Yang Jun, Chen Pengwan. Two nonreflecting boundary conditions in DDA method[J]. Engineering Mechanics, 2010, 27(4):19-23. (in Chinese)
[10] Fu X D, Sheng Q, Zhang Y H, Chen J, Zhang S K, Zhang ZP. Computation of the safety factor for slope stability using discontinuous deformation analysis and the vector sum method[J]. Computers and Geotechnics, 2017, 92:68-76.
[11] Guo L X, Li T L, Chen G Q, Yu P C, Peng X Y, Yang D G. A method for microscopic unsaturated soil-water interaction analysis based on DDA[J]. Computers and Geotechnics, 2019, 108:143-151.
[12] 张伯艳, 李德玉. 白鹤滩水电站左岸边坡抗震分析[J]. 工程力学, 2014, 31(增刊1):149-154. Zhang Boyan, Li Deyu. Dynamic stability analyses of Baihetan hydropower-station left slope[J]. Engineering Mechanics, 2014, 31(Suppl 1):149-154. (in Chinese)
[13] Koo C Y, Chern J C. Modification of the DDA method for rigid block problems[J]. International Journal of Rock Mechanics and Mining Science, 1998, 35(6):683-693.
[14] MacLaughlin M M, Sitar N. Rigid body rotations in DDA[C]//Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulation of Discontinuous Media, Berkeley. 1996:620-635.
[15] Cheng Y M, Zhang Y H. Rigid body rotation and block internal discretization in DDA analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24(6):567-578.
[16] Ke TC. The issue of rigid body rotation in DDA[C]//First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media. Berkeley, 1996:18-25.
[17] Koo C Y, Chern J C. Modification of the DDA method for rigid block problems[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(6):683-693.
[18] 高亚楠, 高峰, Yeung M R. 基于有限变形理论的非连续变形分析方法改进[J]. 岩石力学与工程学报, 2011, 30(11):2360-2365. Gao Yanan, Gao Feng, Yeung M R. Modification of discontinuous deformation analysis method based on finite deformation theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11):2360-2365. (in Chinese)
[19] Jiang W, Zheng H. An efficient remedy for the false volume expansion of DDA when simulating large rotation[J]. Computers and Geotechnics, 2015, 70:18-23.
[20] Lin J S, Al-Zahrani R, Munjiza A, Lee D H. Large displacement and finite strain DDA:An implementation and physical verification[C]//Proceeding, 2nd International Conference on DDA, Kyoto. 1997.
[21] Fan H, Zheng H, Zhao J D. Discontinuous deformation analysis based on strain-rotation decomposition[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 92:19-29.
[1] 冯成栋, 顾明. 基于RANS对考虑风向随高度偏转的大气边界层自保持研究[J]. 工程力学, 2019, 36(2): 26-35,52.
[2] 刘迎春;苗德华. 纸机旋转空心铸钢辊的弹性分析及其应用[J]. 工程力学, 2007, 24(8): 0-181,.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 丰;李宏男;高云莉. 多层偏心结构直接基于位移的抗震设计方法[J]. 工程力学, 2009, 26(8): 82 -087 .
[2] 吕大刚;贾明明. 钢框架结构基于变形可靠度的全概率抗震设计[J]. 工程力学, 2011, 28(5): 117 -123 .
[3] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1 -12 .
[4] 潘天林,吴斌,郭丽娜,陈永盛. 能量守恒逐步积分方法在工程结构动力分析中的应用[J]. 工程力学, 2014, 31(9): 21 -27 .
[5] 楚留声, 刘静, 王伸伟, 赵军. SRC柱-钢梁混合框架直接基于位移的抗震设计方法研究[J]. 工程力学, 2018, 35(8): 100 -110 .
[6] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[7] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[8] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 -11,24 .
[9] 蒋庆, 王瀚钦, 冯玉龙, 种迅. 损伤可控的含减震外挂墙板RC框架结构抗震性能分析[J]. 工程力学, 2019, 36(10): 144 -151 .
[10] 谢昭波, 解琳琳, 林元庆, 陆新征. 典型框架-核心筒单重与双重抗侧力体系的抗震性能与剪力分担研究[J]. 工程力学, 2019, 36(10): 40 -49 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日