工程力学 ›› 2020, Vol. 37 ›› Issue (2): 34-43.doi: 10.6052/j.issn.1000-4750.2019.05.ST01

• 土木工程学科 • 上一篇    下一篇

模拟酸雨腐蚀钢管混凝土构件静力性能研究

陈梦成1,2, 方苇1,2, 黄宏1,2   

  1. 1. 华东交通大学土木建筑学院, 南昌 330013;
    2. 轨道交通基础设施运维安全与保障技术国家地方联合工程研究中心, 南昌 330013
  • 收稿日期:2019-05-15 修回日期:2019-11-09 出版日期:2020-02-25 发布日期:2019-12-20
  • 通讯作者: 陈梦成(1962-),男,江西人,教授,博士,主要从事全寿命周期内钢-混组合结构性能退化评价、健康感知与修复控制研究(E-mail:mcchen@ecjtu.edu.cn). E-mail:mcchen@ecjtu.edu.cn
  • 作者简介:方苇(1989-),女,安徽人,助理实验师,博士生,主要从事工程结构耐久性研究(E-mail:ww_fang@ecjtu.jx.cn);黄宏(1977-),女,江西人,教授,博士,主要从事组合结构研究(E-mail:huanghong1977@foxmail.com).
  • 基金资助:
    国家自然科学基金项目(51878275,51378206,51868020)

STATIC BEHAVIOR OF CORRODED CONCRETE-FILLED STEEL TUBULAR MEMBERS BY SIMULATING ACID RAIN SOLUTION

CHEN Meng-cheng1,2, FANG Wei1,2, HUANG Hong1,2   

  1. 1. School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China;
    2. State-Local Joint Engineering Research Center of Operation&Maintenance Safeguard Technology for Rail Transit Infrastructures, Nanchang 330013, China
  • Received:2019-05-15 Revised:2019-11-09 Online:2020-02-25 Published:2019-12-20

摘要: 该文讨论了模拟酸雨腐蚀环境下钢管混凝土构件静力性能的退化规律,具体包括模拟酸雨腐蚀后:钢材材料力学性能;钢管混凝土构件轴压力学性能;钢管混凝土构件纯弯力学性能;钢管混凝土构件偏压力学性能。分析了腐蚀率对钢材屈服强度、弹性模量、极限抗拉强度和极限延伸率的影响,采用钢管壁厚折减以及壁厚折减耦合材性折减的模拟腐蚀损伤方法,结合有限元ABAQUS软件、规范公式,分别计算了构件荷载-变形关系曲线、极限承载力,并和试验结果进行了比较,发现钢管壁厚折减方法优于壁厚折减耦合材性折减方法,地方标准严于国家标准。

关键词: 钢管混凝土, 酸雨腐蚀, 力学性能, 有限元分析, 试验

Abstract: It discusses the static performance deterioration of corroded concrete-filled steel tubular members by simulating acid rain solution, including:the mechanical properties of corroded steel materials; the axial compressive behavior of corroded concrete-filled steel tubular members; the pure bending mechanical properties of corroded concrete-filled steel tubular members; the eccentric compressive mechanical properties of corroded concrete-filled steel tubular members. The impact of corrosion ratio on the yield strength, elastic modulus, ultimate tensile strength, and ultimate elongation of corroded steel are analyzed. By using wall thickness reduction and wall thickness coupling with material property reduction method to simulate corrosion damage in conjunction with finite element commercial software ABAQUS and design code formulas, the relationships between load and displacement as well as the bearing capacity of corroded concrete-filled steel tubular members are computated. The computational solutions are compared with the test results, implying that the wall thickness reduction method is superior to the wall thickness coupling with material property reduction method, and that the local design code is stricter to the state code.

Key words: concrete-filled steel tubular member, acid rain corrosion, mechanical performance, finite element analysis, test

中图分类号: 

  • TU317.1
[1] 韩林海. 钢管混凝土结构——理论与实践[M]. 第三版. 北京:科学出版社, 2016. Han Linhai. Concrete filled steel tubular structures-Theory and practice[M]. 3rd ed. Beijing:China Science Press, 2016. (in Chinese)
[2] 姬永生, 张博雅, 张领雷, 等. 钢筋锈蚀层发展和锈蚀量分布模型比较研究[J]. 中国矿业大学学报, 2012, 41(3):355-360. Ji Yongsheng, Zhang Boya, Zhang Linglei, et al. Propagation of the corrosion layer and model of corrosion distribution on steel re-enforcing bar in concrete[J]. Journal of China University of Mining & Technology, 2012, 41(3):355-360. (in Chinese)
[3] Dewanbabee H, Das S. Structural behavior of corroded steels pipes subject to axial compression and internal pressure:Experimental study[J]. Journal of Structures Engineering, 2012, 139(1):57-65.
[4] 吴骋. 锈蚀钢管混凝土构件时变模型与承载力衰变规律研究[D]. 重庆:重庆交通大学, 2014. Wu Cheng. Research on time-varying model and bearing capacity of corroded concrete filled steel tubular members[D]. Chongqing:Chongqing Jiaotong University, 2014. (in Chinese)
[5] 韩林海, 陶忠, 刘威. 钢管混凝土结构——理论与实践[J]. 福州大学学报, 2001, 29(6):24-34. Han Linhai, Tao Zhong, Liu Wei. Concrete filled steel tubular structures from theory to practice[J]. Journal of Fuzhou University (Natural Science), 2001, 29(6):24-34. (in Chinese)
[6] Han L H, Hou C, Wang Q L. Square concrete filled steel tubular (CFST) members under loading and chloride corrosion:Experiments[J]. Journal of Constructional Steel Research, 2013, 71(1):11-25.
[7] Hou C, Han L H, Zhao X L. Full-range analysis on square CFST stub columns and beams under loading and chloride corrosion[J]. Thin-Walled Structures, 2013, 68(1):50-64.
[8] Zhang F J, Xia J W, Hong C, et al. Working mechanism of axially-compressed short column of corroded thin-walled concrete-filled circular steel tube[J]. Metallurgical and Mining Industry. 2015, 7(8):264-272.
[9] 王庆利, 冯立明, 屈绍娥. 圆钢管混凝土轴压短柱在长期荷载-氯盐腐蚀耦合作用下的试验研究[J]. 土木工程学报, 2015, 48(增刊1):48-52. Wang Qingli, Feng Liming, Qu Shao'e. Experimental study on axially compressed circular concrete-filled steel tubular stub columns under Long-term coupling effects of loading and chloride corrosion[J]. Civil Engineering Journal, 2015, 48(Suppl 1):48-52. (in Chinese)
[10] 王庆利, 李清林, 屈绍娥. 长期荷载下圆钢管混凝土梁的耐腐蚀性能试验研究[J]. 建筑结构学报, 2015, 36(增刊 2):48-52. Wang Qingli, Li Qinglin, Qu Shaoe. Experimental study on corrosion resistance property of circular concrete filled steel tubular beam under long-term loading[J]. Journal of Building Structures, 2015, 36(Suppl 2):50-55. (in Chinese)
[11] 花幼星, 侯超, 韩林海. 氯离子腐蚀环境下钢管混凝土轴拉构件受力性能研究[J]. 工程力学, 2015, 32(增刊):149-152, 158. Hua Youxing, Hou Chao, Han Linhai. Behavior of CFST tensile members subjected to chloride corrosion[J]. Engineering Mechanics, 2015, 32(Suppl):149-152, 158. (in Chinese)
[12] Amirat A, Mohamed-Chateauneuf A, Chaoui K. Reliability assessment of underground pipelines under the combined effect of active corrosion and residual stress[J]. International Journal of Pressure Vessels & Piping, 2006, 83(2):107-117.
[13] Du C W, Li X G, Liang P, et al. Effects of microstructure on corrosion of x70 pipe steel in an alkaline soil[J]. Journal of Materials Engineering & Performance, 2009, 18(2):216-220.
[14] Sahraoui Y, Chateauneuf A, Khelif R. Inspection and maintenance planning of underground pipelines under the combined effect of active corrosion and residual stress[J]. International Journal of Steel Structures, 2017, 17(1):165-174.
[15] 查晓雄, 李杰, 刘轶翔. 海砂钢管混凝土柱耐腐蚀性能的试验和理论研究[J]. 建筑钢结构进展, 2012, 14(3):60-64. Zha Xiaoxiong, Li Jie, Liu Yixiang. Experimental and theoretical study on durability of sea sand concrete filled steel tubular (CFST) columns[J]. Progress in Steel Building Structures, 2012, 14(3):60-64. (in Chinese)
[16] 陈梦成, 李骐, 谢力. 锈蚀对钢管混凝土柱协同工作机理的影响[J]. 广西大学学报(自然科学版), 2017, 42(1):60-68. Chen Mengcheng, Li Qi, Xie Li. Effects of corrosion on collaborative mechanism of concrete filled steel tubular (CFST) columns[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(1):60-68. (in Chinese)
[17] 陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土轴压力学性能有限元研究[J]. 混凝土, 2016(12):1-4. Chen Mengcheng, Wang Chao, Huang Hong, et al. Study on mechanical properties of recycled concrete filled s teel square tube under acid rain environment[J]. Concrete, 2016(12):1-4. (in Chinese)
[18] 陈梦成, 张凡孟, 黄宏, 等. 酸雨环境下钢管混凝土柱轴压性能研究[J]. 华东交通大学学报, 2015, 32(3):86-90. Chen Mengcheng, Zhang Fanmeng, Huang Hong, et al. Research on axial compression performance of concrete-filled steel tubular columns under acid rain[J] Joural of East China Jiaotong University, 2015, 32(3):86-90. (in Chinese)
[19] 陈梦成, 王超, 黄宏, 等. 酸雨环境下方钢管再生混凝土短柱轴压力学性能试验研究[J]. 建筑结构, 2017, 47(6):35-40. Chen Mengcheng, Wang Chao, Huang Hong, et al. Experimental study on mechanical properties of the recycled concrete filled steel square tube short column under acid rain environment[J]. Building Structure, 2017, 47(6):35-40. (in Chinese)
[20] 陈梦成, 林博洋, 黄宏. 锈蚀圆钢管混凝土短柱轴压承载力研究[J]. 建筑钢结构进展, 2018, 20(1):73-81. Chen Mengcheng, Lin Boyang, Huang Hong. Research on the bearing capacity of corroded circular concrete filled steel tubular short columns[J]. Progress in Steel Building Structures, 2018, 20(1):73-81. (in Chinese)
[21] 陈梦成, 林博洋, 黄宏. 锈蚀方钢管混凝土短柱轴压承载力研究[J]. 钢结构, 2017, 32(5):110-116. Chen Mengcheng, Lin Boyang, Huang Hong. Research on the bearing capacity of corroded square concrete filled steel tubular short column[J]. Steel Construction, 2017, 32(5):110-116. (in Chinese)
[22] 黄宏, 孙微, 陈梦成, 等. 酸雨环境下方钢管再生混凝土纯弯力学性能试验研究[J]. 建筑结构, 2018, 48(2):66-71. Huang Hong, Sun Wei, Chen Mengcheng, et al. Experimental study on pure bending mechanical behavior of recycled concrete-filled square steel tube under acid rain[J]. Building Structure, 2018, 48(2):66-71. (in Chinese)
[23] 黄宏, 胡志慧, 杨超, 等. 模拟酸雨腐蚀后圆钢管再生混凝土抗弯承载力计算方法研究[J]. 混凝土, 2018(4):8-12. Huang Hong, Hu Zhihui, Yang Chao, et al. Calculation method of flexural capacity of recycled concrete-filled circular steel tubes after simulating acid rain corrosion[J]. Concrete, 2018(4):8-12. (in Chinese)
[24] 黄宏, 胡志慧, 杨超, 等. 模拟酸雨环境下圆钢管再生混凝土纯弯试验研究[J]. 应用力学学报, 2019, 36(1):97-103, 256. Huang Hong, Hu Zhihui, Yang Chao, et al. Experimental study of recycled concrete-filled circle steel tubes subjected to pure bending under the environment of acid rain[J]. Chinese Journal of Applied Mechanics, 2019, 36(1):97-103, 256. (in Chinese)
[25] 黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀圆钢管再生混凝土柱偏压承载力计算[J]. 混凝土, 2018(9):14-17. Huang Hong, Zhou Lu, Chen Mengcheng, et al. Load carrying capacity of recycled concrete-filled circular steel tubes subjected to compression-bending under acid rain[J]. Concrete, 2018(9):14-17. (in Chinese)
[26] 黄宏, 周璐, 陈梦成, 等. 酸雨腐蚀后圆钢管再生混凝土柱偏压试验研究[J]. 实验力学, 2018, 33(2):290-298. Huang Hong, Zhou Lu, Chen Mengcheng, et al. Experimental study of recycled concrete filled circular steel tube column subjected to eccentric compression after acid rain corrosion[J]. Journal of Experimental Mechanics, 2018, 33(2):290-298. (in Chinese)
[27] 黄宏, 朱琪, 陈梦成. 酸雨环境下方钢管再生混凝土偏心受压承载力计算方法研究[J]. 混凝土, 2016(11):60-63. Huang Hong, Zhu Qi, Chen Mengcheng. Load carrying capacity of recycled concrete-filled square steel tubes subjected to compression-bending under acid rain[J]. Concrete, 2016(11):60-63. (in Chinese)
[28] 黄宏, 胡志慧, 朱琪, 等. 酸雨环境下方钢管再生混凝土偏心受压试验研究[J]. 铁道学报, 2018, 40(4):90-97. Huang Hong, Hu Zhihui, Zhu Qi, et al. Mechanical study of recycled concrete-filled square steel tubes subjected to compression-bending under acid rain[J]. Journal of the China Railway Society, 2018, 40(4):90-97. (in Chinese)
[29] DB 36/J001-2007, 钢管混凝土结构技术规程[S]. 北京:中国计划出版社, 2007. DB 36/J001-2007, Technical specification for concrete-filled steel tubular structures[S]. Beijing:China Planning Press, 2007. (in Chinese)
[30] GB 50936-2014, 钢管混凝土结构技术规范[S]. 北京:中国标准出版社, 2014. GB 50936-2014, Technical code for concrete filled steel tubular structures[S]. Beijing:Standards Press of China, 2014. (in Chinese)
[1] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.
[2] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201-210.
[3] 于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98-110.
[4] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
[5] 黄学伟, 葛建舟, 赵军, 赵威, 赵奥博. Q690D高强钢基于连续损伤模型的断裂破坏预测分析[J]. 工程力学, 2020, 37(2): 230-240.
[6] 李正农, 范晓飞, 蒲鸥, 郑义津, 宫博. 建筑物风沙流场与荷载的风洞试验研究[J]. 工程力学, 2020, 37(1): 152-158,182.
[7] 李补拴, 路瑶, 赵根田, 闻洋. PEC柱-异形钢梁框架中节点抗震性能试验研究[J]. 工程力学, 2020, 37(1): 126-134.
[8] 王鹏鹏, 郭晓霞, 桑勇, 邵龙潭, 陈之祥, 赵博雅. 基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟[J]. 工程力学, 2020, 37(1): 239-247.
[9] 郭迎庆, 李阳, 徐赵东, 陈笑, 王军建. 采用电动式激振器的混合试验系统设计[J]. 工程力学, 2020, 37(1): 108-114.
[10] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
[11] 安苗, 刘庆宽, 马文勇, 刘小兵. 椭圆形体育馆悬挑罩棚风荷载分布规律的试验研究[J]. 工程力学, 2019, 36(S1): 199-202.
[12] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[13] 杨志坚, 韩嘉明, 雷岳强, 赵海龙, 胡嘉飞. 预应力混凝土管桩与承台连接节点抗震性能研究[J]. 工程力学, 2019, 36(S1): 248-254.
[14] 代鹏, 杨璐, 卫璇, 周宇航. 不锈钢管混凝土短柱轴压承载力试验研究[J]. 工程力学, 2019, 36(S1): 298-305.
[15] 周佳豪, 马文勇, 黄伯城. 临界雷诺数区光滑圆柱振动与气动力研究[J]. 工程力学, 2019, 36(S1): 306-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吕大刚;贾明明. 钢框架结构基于变形可靠度的全概率抗震设计[J]. 工程力学, 2011, 28(5): 117 -123 .
[2] 余志武, 吴玲玉, 单智. 混凝土确定性及随机性损伤本构模型研究进展[J]. 工程力学, 2017, 34(9): 1 -12 .
[3] 李冬, 金浏, 杜修力, 刘晶波, 张帅, 余文轩. 考虑细观组分影响的混凝土宏观力学性能理论预测模型[J]. 工程力学, 2019, 36(5): 67 -75 .
[4] 邓明科, 董志芳, 樊鑫淼, 梁兴文. 高延性混凝土面层加固受弯无筋砌体墙抗震性能试验研究[J]. 工程力学, 0, (): 0 .
[5] 柯晓军, 苏益声, 商效瑀, 孙海洋. 钢管混凝土组合柱压弯性能试验及承载力计算[J]. 工程力学, 2018, 35(12): 134 -142 .
[6] 高良田, 王键伟, 王庆, 贾宾, 王永魁, 石莉. 破冰船在层冰中运动的数值模拟方法[J]. 工程力学, 2019, 36(1): 227 -237 .
[7] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1 -11,24 .
[8] 罗大明, 牛荻涛, 苏 丽. 荷载与环境共同作用下混凝土耐久性研究进展 [J]. 工程力学, 0, (): 0 .
[9] 姚池, 何忱, 蒋水华, 杨建华, 姜清辉. 脆性各向异性岩石破坏过程数值模拟[J]. 工程力学, 2019, 36(2): 96 -103 .
[10] 陈猛, 贾益铭, 陈耕野, 迟东, 王宇涵. 轴压荷载下钢管钢筋混凝土损伤状态超声检测研究[J]. 工程力学, 2019, 36(10): 172 -179 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日