工程力学 ›› 2020, Vol. 37 ›› Issue (3): 228-237.doi: 10.6052/j.issn.1000-4750.2019.05.0280

• 土木工程学科 • 上一篇    下一篇

除尘器壳体双肢组合截面立柱轴压稳定性研究

宋碧颖1, 王登峰1, 王元清2, 方滨3   

  1. 1. 江南大学环境与土木工程学院, 无锡 214122;
    2. 清华大学土木工程系, 北京 100084;
    3. 福建龙净环保股份有限公司, 龙岩 364000
  • 收稿日期:2019-05-28 修回日期:2019-08-11 出版日期:2020-03-25 发布日期:2019-08-23
  • 通讯作者: 王登峰(1981-),男,江苏无锡人,副教授,博士,副院长,从事钢结构研究(E-mail:happywdf@126.com). E-mail:happywdf@126.com
  • 作者简介:宋碧颖(1994-),女,浙江杭州人,硕士生,从事钢结构研究(E-mail:belinda_sby@126.com);王元清(1963-),男,安徽霍山人,教授,博士,博导,从事结构工程研究(E-mail:wang-yq@mail.tsinghua.edu.cn);方滨(1982-),男,湖南岳阳人,高工,硕士,从事电除尘器钢结构的设计和研究(E-mail:fangbin_LK@139.com).
  • 基金资助:
    国家自然科学基金项目(51308258);江苏省自然科学基金项目(BK 20130149);江苏省研究生实践创新计划项目(SJCX18_0636)

STABILITY OF AXIALLY COMPRESSED COLUMNS COMPOSED OF DOUBLE LIMBS IN PRECIPITATOR CASING

SONG Bi-ying1, WANG Deng-feng1, WANG Yuan-qing2, FANG Bin3   

  1. 1. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China;
    2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China;
    3. Fujian Longking Co., Ltd, Longyan 364000, China
  • Received:2019-05-28 Revised:2019-08-11 Online:2020-03-25 Published:2019-08-23

摘要: 除尘器壳体围护结构中的立柱因需要支承顶部较宽截面的箱形梁以及承担较大的轴力而设计成双肢H型钢组合截面。利用非线性有限元方法,研究此双肢组合截面柱在考虑初始缺陷情况下承受轴向压力时的稳定性。研究表明,立柱轧制、墙板与立柱焊接产生的残余应力会小幅降低立柱稳定承载力。立柱的失稳形式为柱顶跨段内前翼缘与前腹板组成T形截面整体弯扭失稳与腹板局部失稳同时发生的相关失稳。墙板与两肢间连接墙板作为蒙皮板,为立柱承担部分荷载并约束其侧向变形。连接墙板越靠近前翼缘,立柱的稳定性越好。连接墙板宽度、墙板宽度、墙板角钢加劲肋刚度和节点连接板厚度等因素对立柱稳定性影响较小。仅邻近立柱的墙板和连接墙板增厚可对立柱稳定性有增强作用,远离立柱的墙板壁厚影响较小。立柱稳定系数与H型钢柱翼缘宽厚比的关系不是单调的;立柱绕弱轴弯曲长细比、腹板高厚比的增大会降低立柱稳定性。基于大量非线性有限元计算结果,提出了除尘器壳体中双肢组合截面轴心受压柱稳定承载力的计算建议。

关键词: 双肢组合截面柱, 轴压稳定性, 非线性有限元, 初始缺陷, 受力蒙皮作用

Abstract: A cross-section of the column in the enclosure structure of electrostatic precipitator casing is composed of double H-shaped limbs as it needs to support the top beam with a wide box section and bear large axial compression. The nonlinear finite element method was used to investigate the stability of the composite section column subjected to axial compression in consideration of the initial imperfections. The research results showed that the residual stresses caused by column rolling and the welding between wallboard and column had a slight adverse influence on the buckling capacity of the column. The column presented the interactive buckling in the top span, that is, the overall flexural-torsional buckling occurred on the T-shaped section composed of the front flange, and the front half web and the local buckling occurred simultaneously on the web. Wallboard and the connecting wallboard as stressed skin plates, shared part of the load and restrained the lateral deformation of the column. The stability of the column increased when the connecting wallboard was close to its front flange. Factors such as the connecting wallboard width, the wallboard width, the stiffness of the angle stiffener and the thickness of the joint plate slightly influenced the stability of the column. When the thickness of neighboring wallboard and neighboring connecting wallboard increased, the stability of the column increased. However, the thickness of the wallboard far from the column had little influence. The buckling factor of the column did not change monotonously with the increase of the width to thickness ratio of the flange. However, it decreased with the increase in the flexural slenderness ratio of the H-shaped limb round its weak axis and the height to thickness ratio of the web. Based on a large number of the nonlinear finite element computation results, an evaluation method was proposed for the buckling bearing capacity of the column composed of double limbs in precipitator casing under axial compression.

Key words: column composed of double limbs, stability under axial compression, nonlinear finite element method, initial imperfection, stressed skin effect

中图分类号: 

  • TU391
[1] 王登峰, 王元清, 石永久, 等. 电除尘器壳体墙板-立柱结构体系缺陷敏感性研究[J]. 工程力学, 2012, 29(5):78-85. Wang Dengfeng, Wang Yuanqing, Shi Yongjiu, et al. Imperfection sensitivity of wall-column structural system in electrostatic precipitator casing[J]. Engineering Mechanics, 2012, 29(5):78-85. (in Chinese)
[2] Nagy Z, Pop A, Mois I, et al. Stressed skin effect on the elastic buckling of pitched roof portal frames[J]. Structures, 2016, 8(2):227-244.
[3] Wrzesien A M, Lim J B P, Xu Y, et al. Effect of stressed skin action on the behavior of cold-formed steel portal frames[J]. Engineering Structures, 2015, 105:123-136.
[4] Wrzesien A M, Phan D T, Lim J B P, et al. Effect of stressed-skin action on optimal design of cold-formed steel square and rectangular-shaped portal frame buildings[J]. International Journal of Steel Structures, 2016, 16(2):299-307.
[5] Phan D T, Lim J B P, Tanyimboh T T, et al. Optimal design of cold-formed steel portal frames for stressed-skin action using genetic algorithm[J]. Engineering Structures, 2015, 93:36-49.
[6] 杨飞. 门式刚架轻型房屋钢结构中的蒙皮效应研究[D]. 成都:西南交通大学, 2014. Yang Fei. Research on stressed-skin effect of portal frame light steel structure[D]. Chengdu:Southwest Jiaotong University, 2014. (in Chinese)
[7] 左洋, 查晓雄. 开洞集装箱房屋结构纵向刚度分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(2):167-176. Zuo Yang, Zha Xiaoxiong. Analysis of longitudinal stiffness of container building structure with holes[J]. Journal of Tianjin University (Science and Technology), 2015, 48(2):167-176. (in Chinese)
[8] 潘立程, 邢凯丽, 钱海峰, 等. 考虑受力蒙皮作用的除尘器壳体墙板的承载性能[J]. 工程科学学报, 2016, 38(9):1335-1342. Pan Licheng, Xing Kaili, Qian Haifeng, et al. Bearing performance of wallboard in electrostatic precipitator casing in consideration of stressed skin effect[J]. Chinese Journal of Engineering, 2016, 38(9):1335-1342. (in Chinese)
[9] 陈天乐. 轻钢结构在考虑应力蒙皮效应影响下的有限元模拟分析[D]. 重庆:重庆交通大学, 2017. Chen Tianle. Finite element simulation analysis of light steel structure under the influence of the stress-skin effect[D]. Chongqing:Chongqing Jiaotong University, 2017. (in Chinese)
[10] 钱海峰, 赵婧同, 王元清, 等. 考虑除尘器箱体墙板-立柱协同受力时立柱在横向荷载作用下的内力计算[J]. 工程力学, 2019, 36(7):227-237, 247. Qian Haifeng, Zhao Jingtong, Wang Yuanqing, et al. Internal force evaluation of columns in electrostatic precipitator casings under transverse loads considering the cooperative load bearing of columns and wallboards[J]. Engineering Mechanics, 2019, 36(7):227-237, 247. (in Chinese)
[11] Shanmugam N E, Zhu D Q, Choo Y S, et al. Experimental studies on stiffened plates under in-plane load and lateral pressure[J]. Thin-Walled Structures, 2014, 80(1):22-31.
[12] 王登峰, 贾文文, 王元清, 等. 初始缺陷对除尘器壳体立柱轴压稳定性的影响[J]. 中南大学学报(自然科学版), 2016, 47(8):2810-2819. Wang Dengfeng, Jia Wenwen, Wang Yuanqing, et al. Influence of initial imperfection on stability of axially compressed column in electrostatic precipitator casing[J]. Journal of Central South University (Science and Technology), 2016, 47(8):2810-2819. (in Chinese)
[13] 魏明钟. 钢结构设计新规范应用讲评[M]. 北京:中国建筑工业出版社, 1991. Wei Mingzhong. Comments on the application of new code for design of steel structures[M]. Beijing:China Architecture and Building Press, 1991. (in Chinese)
[14] GB 51249-2017, 建筑钢结构防火技术规范[S]. 北京:中国计划出版社, 2017. GB 51249-2017, Code for fire safety of steel structures in buildings[S]. Beijing:China Planning Press, 2017. (in Chinese)
[15] 童根树. 轴压杆偏心支撑的有效性及Hartford体育馆网架破坏原因分析[J]. 西安建筑科技大学学报(自然科学版), 1990, 22(3):221-232. Tong Genshu. On the effectiveness of eccentric brace on column and the collapse of Hartford Coliseum[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 1990, 22(3):221-232. (in Chinese)
[1] 李钢, 吕志超, 余丁浩. 隔离非线性分层壳有限单元法[J]. 工程力学, 2020, 37(3): 18-27.
[2] 牟犇, 王君昌, 崔瑶, 庞力艺, 松尾真太朗. 一种改进型方钢管柱与钢梁连接节点抗震性能研究[J]. 工程力学, 2019, 36(6): 164-174.
[3] 江旭东, 李鹏飞, 刘铮, 滕晓艳. 球囊扩张式血管支架介入对弯曲血管的生物力学损伤研究[J]. 工程力学, 2019, 36(2): 239-248.
[4] 任晓丹, 范伟达. 基于损伤模型的钢筋混凝土梁剪切破坏全过程分析[J]. 工程力学, 2017, 34(增刊): 139-142,148.
[5] 叶勇, 韩林海, 陶忠. 脱空对圆钢管混凝土受剪性能的影响分析[J]. 工程力学, 2016, 33(增刊): 62-66,71.
[6] 洪兆徽, 刘润, 刘文彬, 闫澍旺. 双拱缺陷管线整体屈曲的解析解研究[J]. 工程力学, 2016, 33(3): 31-38.
[7] 杜修力,揭鹏力,金浏. 考虑初始缺陷影响的混凝土梁动态弯拉破坏模式分析[J]. 工程力学, 2015, 32(2): 74-81.
[8] 马尤苏夫,王先铁,周清汉,王连坤. 穿芯高强螺栓-端板节点方钢管混凝土框架抗震性能数值分析[J]. 工程力学, 2015, 32(2): 154-162.
[9] 施兴华,杭岑,嵇春艳,石晓彦. 带有初始缺陷船用加筋板极限强度的不确定性分析[J]. 工程力学, 2015, 32(2): 221-226.
[10] 李帼昌, 孙卿, 郭晓龙, 范宗帅. T型钢连接的方钢管柱-H型钢梁半刚性节点滞回性能的有限元分析[J]. 工程力学, 2014, 31(增刊): 32-35.
[11] 胡郑州, 吴明儿. 考虑剪切效应三维纤维梁单元的几何非线性增量有限元分析[J]. 工程力学, 2014, 31(8): 134-143.
[12] 赫中营,叶爱君. 力法非线性梁柱单元的合理单元长度划分[J]. 工程力学, 2014, 31(7): 178-184,189.
[13] 王娟, 李庆斌, 卿龙邦, 管俊峰. 混凝土单轴抗压强度三维细观数值仿真[J]. 工程力学, 2014, 31(3): 39-44.
[14] 聂建国,丁然,樊健生. 超高层建筑伸臂桁架-核心筒剪力墙节点受力性能数值与理论研究[J]. 工程力学, 2014, 31(1): 46-55.
[15] 钮鹏,金春福,杨刚,张迪. 考虑初始缺陷的碳纤维增强压弯钢构件稳定问题研究[J]. 工程力学, 2013, 30(增刊): 195-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日