工程力学 ›› 2020, Vol. 37 ›› Issue (3): 217-227.doi: 10.6052/j.issn.1000-4750.2019.05.0251

• 土木工程学科 • 上一篇    下一篇

一种通用高层建筑模型烟囱效应的数值模拟分析

解学峰, 杨易   

  1. 华南理工大学亚热带建筑科学国家重点实验室 广东, 广州 510641
  • 收稿日期:2019-05-06 修回日期:2019-09-25 出版日期:2020-03-25 发布日期:2019-10-18
  • 通讯作者: 杨易(1975-),男,湖北武汉人,研究员,工学博士,主要从事结构风工程研究(E-mail:ctyangyi@scut.edu.cn). E-mail:ctyangyi@scut.edu.cn
  • 作者简介:解学峰(1994-),男,安徽合肥人,硕士生,主要从事结构风工程研究(E-mail:1710459024@qq.com).
  • 基金资助:
    国家自然科学基金项目(51478194)

NUMERICAL INVESTIGATION ON THE STACK EFFECT OF A GENERAL HIGH-RISE BUILDING MODEL

XIE Xue-feng, YANG Yi   

  1. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, Guangdong 510641, China
  • Received:2019-05-06 Revised:2019-09-25 Online:2020-03-25 Published:2019-10-18

摘要: 超高层建筑的烟囱效应问题,是由室内外环境和建筑设计等多种因素引起的一种室内外非受控空气渗透现象。强烈的烟囱效应可能导致电梯营运故障、电梯井道气动噪声及空调能源浪费等问题,当前对于该问题的研究进度远滞后于建设速度。在对10余栋超高层建筑烟囱效应实测研究的基础上,提炼总结其共同建筑设计特征,基于结构风工程中标准高层建筑模型,设计了一种分析室内外空气渗透作用的高层建筑烟囱效应通用高层建筑模型,采用多区域网络模型数值模拟方法进行数值仿真,分析了围护结构气密性等级、首层门厅设计、建筑内部空间分割、外部环境等主要影响因素对电梯门压差分布的影响规律,得出如下结论:相较于短程电梯,通高电梯的电梯门受烟囱效应影响程度最大;除室外环境和电梯井道高度外,建筑幕墙气密性等级、建筑内部隔断设计等因素也影响电梯压差分布;提高幕墙围护结构的密封等级,能有效地削弱烟囱效应的作用强度,降低各层电梯门的压差;首层厅门的设计和状态对烟囱效应影响显著,其开闭状态对首层电梯门压差影响较大;在建筑首层或顶层电梯厅设置前室门后,电梯门压差明显降低;烟囱效应还受室外风场作用的影响,相较于热压作用,风速和风向对建筑烟囱效应压差的影响相对复杂,不同风向和风速的作用规律不同,需要结合实际工程的风气象条件进行具体研究。基于通用高层建筑模型烟囱效应的详细参数分析得出的一般规律,对实际超高层建筑的烟囱效应特性分析以及强烟囱效应的缓解措施具有一定的参考价值。

关键词: 超高层建筑, 烟囱效应, 通用高层建筑模型, 数值模拟, 参数分析

Abstract: The stack effect of super high-rise buildings is a phenomenon of uncontrolled indoor and outdoor air infiltrations caused by certain factors such as the indoor and outdoor environmental conditions and the architectural features as well. Strong stack effect may lead to the operation failure of the elevator, the aerodynamic noise in elevator shaft and the energy waste of air conditioning etc. Currently, the research on this issue is far behind the construction of high-rise buildings. Based on the field investigations on the stack effects of more than 10 super high-rise buildings, their common architectural features were summarized and a general high-rise building model for the analysis of stack effect was designed, which was based on the standard high-rise building model usually used in structural wind engineering field. A multi-zone network model method was employed to analyze the influences of several important factors on the pressure distributions of the elevators, i.e., the airtightness level of building envelope, the design of the entrance door, the indoor space division and the outdoor meteorological condition etc. The following conclusions were finally obtained:comparatively, doors of the shuttle elevators were most likely affected by strong stack effect; in addition to the outdoor meteorological conditions and the height of the elevator shaft, other factors such as the airtightness of the curtain wall and the indoor space divisions would affect the pressure distributions of the elevator doors as well, improving the airtightness of the curtain wall could effectively reduce the strength of the stack effect and the pressure difference on the elevator doors; the design and the status of the entrance door on the first floor would play an important role for the whole stack effect performance, and the opening and closing process of the sliding door would have a great influence on the pressure differences acting on the elevator doors on the first floor; when the elevator lobby door was either installed in the first or the top floor, the pressure difference acting on the elevator doors would significantly decrease; the stack effect would be affected by the outdoor wind conditions as well, and the influences of the wind speed and the wind direction on the stack effect were relatively more complex than those of the thermal pressure. Different wind conditions would bring different results, thereby, it was necessary to perform individual investigation combined with the local meteorological conditions. Results obtained from the detail parameter analyses based on the general high-rise building model in this paper could provide a useful reference for investigating the stack effect phenomena of real super high-rise buildings, as well as the mitigation measures for strong stack effects.

Key words: high-rise buildings, stack effect, general high-rise building model, numerical simulation, parameter analyses

中图分类号: 

  • TU973.32
[1] Tamura G T, Wilson A G. Pressure differences caused by chimney effect in tall buildings[J]. ASHRAE Transaction, 1967, 73(2):1-12.
[2] Tamura G T. Pressure differences caused by wind on two tall buildings[J]. ASHRAE Transaction, 1968, 74(2):1-8.
[3] Tamura G T, Wilson A G. Pressure differences caused by wind on two tall buildings[J]. ASHRAE Transaction, 1969, 74(2):170-181.
[4] 周晅毅, 李景, 孙鲁鲁, 等. 超高层建筑电梯热压分布特性模拟研究[J]. 建筑结构, 2018, 48(9):67-71. Zhou Xuanyi, Li Jing, Sun Lulu, et al. Simulation study on characteristics of thermal pressure distribution of elevators in super high-rise buildings[J]. Building Structure, 2018, 48(9):67-71. (in Chinese)
[5] 向伊依, 潘嵩, 张健宸, 等. 北方地区高层建筑在"烟囱效应"作用下的不同竖井区域压差分布特性及节能策略[J].建筑技术开发, 2016, 43(10):41-45. Xiang Yiyi, Pan Song, Zhang Jianchen, et al. Characteristic of pressure distribution in various vertical shafts in high-rise buildings caused by stack effect and energy saving strategies[J]. Building Technology Development, 2016, 43(10):41-45. (in Chinese)
[6] Strege S, Ferreira M. Characterization of stack effect in high-rise buildings under winter conditions, including the impact of stairwell pressurization[J]. Fire Technology, 2016, 79(4):1-16.
[7] Yang Yi, Yin Huabin, Xie Zhuangning. Evaluation of the stack effect on the elevator shaft of high-rise building[C]//14th International Conference on Wind Engineering. Porto Alegre, Brazil, 2015.
[8] 殷华斌. 超高层建筑烟囱效应模拟与风压联合作用分析[D]. 广州:华南理工大学, 2015, 43-86. Yin Huabin. Numerical simulation of the stack effect and the combinations of the wind pressure analysis on super high-rise building[D]. Guangzhou:South China University of Technology, 2015, 43-86. (in Chinese)
[9] 杨易, 万腾骏, 王葵, 等.高层建筑烟囱效应及风压联合作用的模拟研究[J]. 湖南大学学报(自然科学版), 2018, 45(11):10-19. Yang Yi, Wan Tengjun, Wang Kui, et al. Numerical simulation research on combined wind and stack effects of a super high-rise building[J]. Journal of Hunan University (Natural Sciences), 2018, 45(11):10-19. (in Chinese)
[10] Yu Yuanlin, Yang Yi, Xie Zhuangning. A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building[J]. Building & Environment, 2018, 138(15):300-313.
[11] Lee J, Song D, Park D. A study on the development and application of the E/V shaft cooling system to reduce stack effect in high-rise buildings[J]. Building & Environment, 2010, 45(2):311-319.
[12] Yu Jung-yeon, Song kyoo-dong, Cho Dong-woo. Resolving stack effect problems in a high-rise office building by mechanical pressurization[J]. Sustainability, 2017, 9(10):1731-1747.
[13] Kim J, Lee S, Jeon S. Field experiment of the measures to control the stack effect in stairwell of building[C]//Proceedings of the 3rd World Congress on Mechanical, Chemical and Material Engineering (MCM'17), Rome, 2017.
[14] Lee J, Go B, Hwang T. Characteristics of revolving door use as a countermeasure to the stack effect in buildings[J]. Journal of Asian Architecture and Building Engineering, 2017, 16(2):417-424.
[15] ASHRAE. 2009 ASHRAE Handbook-Fundamentals[S]. Atlanta:American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2009.
[16] Jo J H, Lim J H, Song S Y, et al. Characteristics of pressure distribution and solution to the problems caused by stack effect in high-rise residential buildings[J]. Building & Environment, 2007, 42(1):263-277.
[17] 王葵. 高层建筑烟囱效应的模拟与实测研究[D]. 广州:华南理工大学, 2017. Wang Kui. Numerical simulation and experimental study of the stack effect on high-rise buildings[D]. Guangzhou:South China University of Technology, 2017. (in Chinese)
[18] Yang Yi, Xie Zhuangning, Gu Ming. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model[J]. Wind and Structures, 2017, 24(5):465-480.
[1] 肖福勤, 陈作钢, 代燚, 宋肖锋, 郭军, 余德海, 吴昊. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
[2] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[3] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
[4] 郑山锁, 荣先亮, 张艺欣, 董立国. 冻融损伤低矮RC剪力墙数值模拟方法[J]. 工程力学, 2020, 37(2): 70-80.
[5] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[6] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[7] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[8] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[9] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[10] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[11] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[12] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[13] 陈云, 蒋欢军, 刘涛, 万志威, 鲁正. 分级屈服型金属阻尼器抗震性能研究[J]. 工程力学, 2019, 36(3): 53-62.
[14] 钟紫蓝, 王书锐, 杜修力, 李立云, 侯本伟. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230,239.
[15] 李天娥, 孙晓颖, 武岳, 王长国. 软式平流层飞艇气弹模型相似参数分析[J]. 工程力学, 2019, 36(3): 240-246,256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[7] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[8] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[9] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[10] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日