工程力学 ›› 2020, Vol. 37 ›› Issue (2): 183-191.doi: 10.6052/j.issn.1000-4750.2019.05.0136

• 土木工程学科 • 上一篇    下一篇

带抗风夹的直立锁边屋面系统抗风性能的参数研究

孙瑛1,2, 武涛1, 武岳1,2   

  1. 1. 哈尔滨工业大学土木工程学院, 黑龙江, 哈尔滨 150090;
    2. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 黑龙江, 哈尔滨 150090
  • 收稿日期:2019-03-30 修回日期:2019-08-16 出版日期:2020-02-25 发布日期:2020-01-19
  • 通讯作者: 武涛(1994-),男,山东临沂人,博士生,主要从事大跨度空间结构抗风设计理论研究(E-mail:wutao21y@163.com). E-mail:wutao21y@163.com
  • 作者简介:孙瑛(1976-),女,福建福州人,教授,博士,博导,主要从事大跨度空间结构抗风设计理论研究(E-mail:sunnyhit@sina.com);武岳(1972-),男,黑龙江哈尔滨人,教授,博士,博导,主要从事大跨度空间结构抗风设计理论研究(E-mail:wuyue_2000@163.com).
  • 基金资助:
    国家自然科学基金项目(51878218)

PARAMETER STUDY ON WIND RESISTANT PERFORMANCE OF STANDING SEAM ROOF SYSTEM WITH ANTI-WIND CLIP

SUN Ying1,2, WU Tao1, WU Yue1,2   

  1. 1. School of Civil Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China;
    2. Key Lab of Structures Dynamic Behavior and Control of China Ministry of Education, Harbin institute of Technology, Harbin, Heilongjiang 150090, China
  • Received:2019-03-30 Revised:2019-08-16 Online:2020-02-25 Published:2020-01-19

摘要: 目前许多大跨建筑的屋面围护结构采用带抗风夹的直立锁边屋面系统来抵抗强风作用,但对于使用了抗风夹的直立锁边屋面系统在风荷载下的变形、应力等特征响应的变化鲜有深入研究。该文借助试验与数值模拟手段研究了板宽、板厚、抗风夹间距等参数对屋面系统特征响应及承载力的影响,提出了屋面系统的破坏准则并拟合得到了屋面系统的抗风承载力计算公式。研究表明,板厚每增加0.1 mm,承载力提高10%左右;板宽每减小100 mm,承载力提高25%左右;抗风夹间距小于1100 mm时,每减小100 mm,承载力提高20%左右,抗风夹间距大于1100 mm时,每减小100 mm,承载力提高10%左右;改变抗风夹构造对承载力影响不大。

关键词: 直立锁边屋面系统, 抗风夹, 静力试验, 数值模拟, 参数研究

Abstract: At present, the standing seam roof system with anti-wind clips is adopted in many largespan buildings to resist the action of strong wind. However, few further studies have been conducted on the changes in the deformation, stress and other characteristic responses of the standing seam roof system with anti-wind clips under wind loading. By means of experiment and numerical simulation, the influence of plate width, plate thickness, spacing between wind clips and other parameters on the characteristic response and bearing capacity of the roof system is studied. The failure criterion of the roof system is proposed and the formula for calculating the bearing capacity of the roof system is obtained by fitting. The research shows that the bearing capacity increases by about 10% for every 0.1 mm increase in plate thickness. The bearing capacity increases by 25% for every 100 mm reduction in plate width. When the anti-wind clips spacing is less than 1100 mm, the bearing capacity increases by about 20% for each reduction of 100 mm. When the anti-wind clips spacing is more than 1100 mm, the bearing capacity increases by about 10% for each reduction of 100 mm. Changing the structure of an anti-wind clip has little effect on the bearing capacity.

Key words: standing seam roof system, anti-wind clip, static experiment, numerical simulation, parametric study

中图分类号: 

  • TU312.1
[1] Schroter R C. Air pressure testing of sheet metal roofing[C]//Proceedings of the Second International Symposium on Roofing and Technology, Gaithersburg, MD, 1985:1-6.
[2] Sinno R R. Response of metal roofs to uniform static and true hurricane wind loads[C]//Proceedings of the Nineteenth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, U.S.A, 2008:281-305.
[3] Damatty A A E, Rahman M, Ragheb O. Component testing and finite element modeling of standing seam roofs[J]. Thin-Walled Structures, 2003, 25(41):1053-1072.
[4] Ali H M, Senseny P E. Models for standing seam roofs[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12/13/14/15):1689-1702.
[5] ANSI/FM 4474-2004, American national standard for evaluating the simulated wind uplift resistance of roof assemblies using static positive and negative differential pressures[S]. Norwood, USA:FM Approval, 2004.
[6] EOTA 006, Guideline for European technical approval of systems of mechanically fastened flexible roof waterproofing membranes[S]. Brussels:EOTA, 2000.
[7] 秦国鹏, 张晓旭, 孙超. 铝合金屋面系统抗风揭性能试验研究及数值分析[J]. 工业建筑, 2016, 46(10):169-173. Qin Guopeng, Zhang Xiaoxu, Sun Chao. Experimental research and numerical analysis of an aluminum-alloy roof system under wind uplift load[J]. Industrial Construction, 2016, 46(10):169-173. (in Chinese)
[8] 孙成疆. 直立锁缝金属屋面系统在模拟极端暴风工况下抗风揭能力测试与分析[J]. 建筑结构, 2011, 41(增刊 1):1438-1442. Sun Chengjiang. Simulated wind uplift pressure analysis and tests of the standing seam metal roof system[J]. Building Structure, 2011, 41(Suppl 1):1438-1442. (in Chinese)
[9] 陈玉. 直立锁边屋面系统抗风承载能力研究[D]. 北京:北京交通大学, 2015. Chen Yu. Loading bearing capacity of the standing seam roof system under the wind load[D]. Beijing:Beijing Jiaotong University, 2015. (in Chinese)
[10] 范亚娟. 金属屋面系统抗风吸力的静力性能和疲劳性能研究[D]. 北京:北京交通大学, 2016. Fan Yajuan. Study on the static and fatigue performance of metal roof system under wind suction[D]. Beijing:Beijing Jiaotong University, 2016. (in Chinese)
[1] 郑山锁, 荣先亮, 张艺欣, 董立国. 冻融损伤低矮RC剪力墙数值模拟方法[J]. 工程力学, 2020, 37(2): 70-80.
[2] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[3] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[4] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[5] 陈恒, 肖映雄, 郭瑞奇. 基于p型自适应有限元法的混凝土骨料模型数值模拟[J]. 工程力学, 2019, 36(S1): 158-164.
[6] 程麦理. 黄土场地桩基横向力学行为数值模拟[J]. 工程力学, 2019, 36(S1): 229-233.
[7] 王钰, 纪巧玲, 刘庆凯. 规则波作用下导桩锚泊的浮防波堤水动力特性的数值模拟[J]. 工程力学, 2019, 36(S1): 268-271,284.
[8] 徐世烺, 陈超, 李庆华, 赵昕. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究[J]. 工程力学, 2019, 36(9): 50-59.
[9] 宋二祥, 仝睿, 罗爽, 李鹏. 路基土体“时变覆盖效应”的数值模拟分析[J]. 工程力学, 2019, 36(8): 30-39.
[10] 刘文光, 张鑫, 郭彦, 张强. 放大型黏滞阻尼墙的力学性能与试验研究[J]. 工程力学, 2019, 36(8): 40-48.
[11] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[12] 曾磊, 谢炜, 郑山锁, 陈熠光, 任雯婷. T形配钢型钢混凝土柱-钢梁框架抗震性能研究[J]. 工程力学, 2019, 36(5): 157-165.
[13] 种迅, 张蓝方, 万金亮, 王德才, 叶献国, 解琳琳, 邵徽斌. 两层带开洞预制剪力墙抗震性能试验研究与数值模拟分析[J]. 工程力学, 2019, 36(5): 176-183.
[14] 杨勇, 陈阳, 张锦涛, 林冰, 于云龙. 部分预制装配型钢混凝土构件斜截面抗剪承载能力试验研究[J]. 工程力学, 2019, 36(4): 109-116.
[15] 董金芝, 张富文, 李向民. 框架-预应力摇摆墙结构抗震性能试验研究[J]. 工程力学, 2019, 36(4): 167-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日