工程力学 ›› 2020, Vol. 37 ›› Issue (3): 202-216.doi: 10.6052/j.issn.1000-4750.2019.04.0238

• 土木工程学科 • 上一篇    下一篇

火灾蔓延作用下混凝土连续板力学行为试验研究与模拟

王勇1,2, 马帅1, 张亚军3, 肖泽南4, 张耕源4, 陈振兴1, 周萌1   

  1. 1. 江苏省土木工程环境灾变与结构可靠性重点实验室, 江苏, 徐州 221008;
    2. 中国矿业大学深部岩土力学与地下工程国家重点试验室, 江苏, 徐州 221008;
    3. 江苏建筑节能与建造技术协同创新中心, 江苏, 徐州 221008;
    4. 中国建筑科学研究院有限公司, 北京 100013
  • 收稿日期:2019-04-30 修回日期:2019-08-07 出版日期:2020-03-25 发布日期:2019-11-11
  • 通讯作者: 肖泽南(1973-),男,北京人,学士,研究员,主要从事结构抗火研究(E-mail:xiaozn@126.com). E-mail:xiaozn@126.com
  • 作者简介:王勇(1984-),男,山东人,博士,副教授,主要从事结构抗火研究(E-mail:yongwang@cumt.edu.cn);马帅(1992-),男,宁夏人,硕士生,主要从事结构抗火研究(E-mail:mashuai_cumt@163.com);张亚军(1996-),男,江苏人,硕士生,主要从事结构抗火研究(E-mail:yj_zhang@163.com);张耕源(1992-),男,陕西人,硕士,主要从事结构抗火研究(E-mail:1603114732@qq.com);陈振兴(1996-),男,湖南人,硕士生,主要从事结构抗火研究(E-mail:1326956975@qq.com);周萌(1998-),女,四川人,本科生,主要从事结构抗火研究(E-mail:zhoumeng_cumt@163.com)
  • 基金资助:
    国家重点研发计划项目(2018YFD1100403);国家青年自然科学基金项目(51408594);中央高校基本科研业务费专项基金项目(2019XKQYMS32);徐州市科技计划项目(KC19014)

EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS OF CONCRETE CONTINUOUS SLABS SUBJECT TO TRAVELING FIRE

WANG Yong1,2, MA Shuai1, ZHANG Ya-jun3, XIAO Ze-nan4, ZHANG Geng-yuan4, CHEN Zhen-xing1, ZHOU Meng1   

  1. 1. Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering, Xuzhou, Jiangsu, 221008, China;
    2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining&Technology, Xuzhou, Jiangsu, 221008, China;
    3. Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology, Xuzhou, Jiangsu 221008, China;
    4. China Academy of Building Research, Beijing 100013, China
  • Received:2019-04-30 Revised:2019-08-07 Online:2020-03-25 Published:2019-11-11

摘要: 为研究火灾蔓延作用对三跨混凝土连续板力学行为影响,对四块混凝土连续板进行仅边(中)跨和三跨依次受火试验,获得各跨温度、变形、裂缝、爆裂和破坏模式等变化规律。在此基础上,对一块混凝土试验板火灾行为进行数值分析,研究了几何(非)线性和混凝土热膨胀应变对火灾蔓延作用下连续板各跨弯矩分布和薄膜机理影响规律。结果表明:混凝土板裂缝和爆裂主要出现于受火跨,非受火跨裂缝较少;板底和板顶具有完全不同裂缝分布,即板底短裂缝多出现在板边区域,板顶多为平行短跨方向通长裂缝。同时,混凝土连续板各跨跨中变形趋势取决于自身位置和火灾蔓延方向,变形最大值取决于自身受火时长和炉温。此外,数值分析表明,火灾蔓延行为对连续板各跨最大弯矩分布和拉压薄膜效应发展有重要影响;相比Lie模型,EC2模型计算结果较为合理,且几何非线性影响不可忽略。

关键词: 连续板, 试验, 火灾蔓延, 数值分析, 位移, 温度

Abstract: To investigate the effect of the traveling fire on the mechanical behavior of three-span continuous slabs, this paper conducted mechanical tests on the edge, middle-span and three-span specimens subjected to different fire sequences. The temperature, deflection, cracking, spalling and the failure mode were investigated. In addition, the fire behavior of one tested slab was simulated based on the numerical model. The model was used to investigate the effect of the geometrical nonlinear (linear) property and the concrete thermal strains on the moment distribution and the membrane action of different spans in the concrete continuous slab subjected to traveling fire. The results indicate that the cracking and spalling mainly occurred on the heated spans, with less cracks on the unheated spans. There were different failure modes on the top and bottom surfaces of the concrete slabs. Edge short cracks and short-span cracks appeared on the bottom and top surfaces, respectively. The deflection distribution of each span was dependent on its positon and the fire traveling direction. The maximum deflection was dependent on the fire duration and furnace temperatures. The numerical results showed that the fire traveling behavior had important effect on the maximum moment and the tensile or compressive membrane action of each span in the continuous slab. Compared to the Lie model, the prediction based on the EC2 model was relatively reasonable, and the effect of the geometrical nonlinearity should be considered in the analysis.

Key words: continuous slabs, test, travelling fire, numerical analysis, deflection, temperature

中图分类号: 

  • TU375.2
[1] 陈礼刚, 董毓利, 李晓东. 钢筋混凝土三跨连续板中跨受火试验研究[J]. 建筑结构, 2004, 34(4):39-41, 53. Chen Ligang, Dong Yuli, Li Xiaodong. Experimental study on mid-span fire of reinforced concrete three-span continuous slab[J]. Building Structure, 2004, 34(4):39-41, 53. (in Chinese)
[2] 陈礼刚, 高立堂, 李晓东, 等. 两邻跨受火RC三跨连续板抗火性能试验研究[J]. 西安建筑科技大学学报:自然科学版, 2006, 38(1):100-104. Chen Ligang, Gao Litang, Li Xiaodong, et al. Study on the fire resistance of the 3-span RC continuous slabs when the two adjacent spans are on fire[J]. Journal of Xi'an University:Science and Technology Edition, 2006, 38(1):100-104. (in Chinese)
[3] 袁爱民, 董毓利, 戴航, 等. 无粘结预应力混凝土三跨连续板火灾试验研究[J]. 建筑结构学报, 2006, 27(6):60-66.Yuan Aimin, Dong Yuli, Dai Hang, et al. Experimental investigation of unbonded prestressed concrete continuous slab subjected to fire[J]. Journal of Building Structures, 2006, 27(6):60-66. (in Chinese)
[4] 郑文忠, 侯晓萌, 许名鑫. 两跨无粘结预应力混凝土连续板抗火性能试验与分析[J]. 建筑结构学报, 2007, 28(5):1-13. Zheng Wenzhong, Hou Xiaomeng, Xu Mingxin. Experimentand analysis on fire resistance of two-span unbonded prestressed concrete continuous slabs[J]. Journal of Building Structures, 2007, 28(5):1-13. (in Chinese)
[5] 杨志年, 董毓利, 吕俊利, 等. 整体结构中钢筋混凝土双向板火灾试验研究[J]. 建筑结构学报, 2012, 33(9):96-103. Yang Zhinian, Dong Yuli, Lü Junli, et al. Experimental study of two-way reinforced concrete slab subjected to fire in a whole structure[J]. Journal of Building Structures, 2012, 33(9):96-103. (in Chinese)
[6] Wang Y, Dong Y L, Li B. A fire test on continuous reinforced concrete slabs in a full-scale multi-story steel-framed building[J]. Fire Safety Journal, 2013, 61:38-48.
[7] 李兵, 董毓利, 娄永杰, 等. 足尺钢框架中连续板格火灾试验研究[J]. 工程力学, 2015, 32(1):145-153. Li Bing, Dong Yuli, Lou Yongjie, et al. A fire test of continuous panels in a full-scale steel-framed structure[J]. Engineering Mechanics, 2015, 32(1):145-153. (in Chinese)
[8] Dong Y L, Zhu C J. Limit load carrying capacity of two-way slabs with two edges clamped and two edges simply supported in fire[J]. Journal of Structural Engineering, 2011, 137(10):1182-1192.
[9] Wang Y, Yuan G L, Huang Z H, et al. Experimental study on the fire behavior of reinforced concrete slabs under combined uni-axial in-plane and out-of-plane loads[J]. Engineering Structures, 2016, 128:316-332.
[10] Wang Y, Bisby L A, Wang T Y, et al. Fire behaviour of reinforced concrete slabs under combined biaxial in-plane and out-of-plane loads[J]. Fire Safety Journal, 2018, 96:27-45.
[11] 王勇, 段亚昆, 张亚军, 等. 单向面内约束混凝土双向板抗火性能试验研究及数值分析[J]. 工程力学, 2018, 35(3):65-78. Wang Yong, Duan Yakun, Zhang Yajun, et al. Experiment and numerical analysis on the fire-resistant performance of two-way concrete slabs with unilateral in-plane restraints[J]. Engineering Mechanics, 2018, 35(3):65-78. (in Chinese)
[12] 王勇, 史伟男, 王腾焱, 等. 单向面内约束混凝土双向板火灾试验及承载力分析[J]. 工程力学, 2017, 34(11):145-157. Wang Yong, Shi Weinan, Wang Tengyan, et al. Fire test and limit carrying capacity analysis of two-way concrete slabs with unilateral in-plane restraints[J]. Engineering Mechanics, 2017, 34(11):145-157. (in Chinese)
[13] 王勇, 段亚昆, 张亚军, 等. 不同跨依次受火混凝土连续板试验研究及理论分析[J]. 土木工程学报, 2019, 52(9):23-40. Wang Yong, Duan Yakun, Zhang Yajun, et al. Experimental study and theoretical analysis of concrete continuous slabs with different spans subject to fire in order[J]. China Civil Engineering Journal, 2019, 52(9):23-40. (in Chinese)
[14] Liao F Y, Huang Z H. Modelling localised fracture of reinforced concrete structures[J]. Engineering and Computational Mechanics, 2016, 169(2):53-69.
[15] Wang Y, Yuan G L, Huang Z H, et al. Modelling of reinforced concrete slabs in fire[J]. Fire Safety Journal, 2018, 100:171-185.
[16] Linus L, Andrew B, Peter M, et al. Numerical modelling of two-way reinforced concrete slabs in fire[J]. Engineering Structures, 2004, 26:1081-1091.
[17] Tom M, Ruber V C, Thomas G. Assessment of damage and residual load bearing capacity of a concrete slab after fire:Applied reliability-based methodology[J]. Engineering Structures, 2017, 150:969-985.
[18] Thomas G, Jean-Marc F. A plastic-damage model for concrete in fire:Applications in structural fire engineering[J]. Fire Safety Journal, 2015, 71:268-278.
[19] Gernay T, Franssen J M. A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep[J]. Fire Safety Journal, 2012, 51:1-9.
[20] Jiang J, Li G Q. Parameters affecting tensile membrane action of reinforced concrete floors subjected to elevated temperatures[J]. Fire Safety Journal, 2018, 96:59-73.
[21] Egle R, Panagiotis K, Ann J, et al. Structural analysis of multi-storey steel frames exposed to travelling fires and traditional design fires[J]. Engineering Structures, 2017, 150:271-287.
[22] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture and Building Press, 2010. (in Chinese)
[23] GB 50016-2014, 建筑设计防火规范[S]. 北京:中国计划出版社, 2014.GB 50016-2014, Code for fire protection design of buildings[S]. Beijing:China Planning Press, 2014. (in Chinese)
[24] 王滨, 董毓利. 四边简支钢筋混凝土双向板火灾试验研究[J]. 建筑结构学报, 2009, 30(6):23-33. Wang Bin, Dong Yuli. Experimental research of four-edge simple support two-way reinforced concrete slab under fire[J]. Journal of Building Structures, 2009, 30(6):23-33. (in Chinese)
[25] GB/T 9978-2008, 建筑构件耐火试验方法[S]. 北京:中国标准出版社, 2008. GB/T 9978-2008, Fire-resistance tests-elements of building[S]. Beijing:China Standard Press, 2008. (in Chinese)
[26] Eurocode 2:design of concrete structures, ENV 1992:Part 1-2:General rules-structural fire design[S]. Brussels:Belgian Application Document, 1999.
[27] ASCE:Structural fire protection, Manual No. 78, ASCE committee on fire protection, structural division[S]. New York:American Society of Civil Engineers, 1992.
[28] 王勇, 袁广林, 王腾焱, 等. 双向面内约束混凝土板火灾试验及数值分析[J]. 土木工程学报, 2018, 51(5):48-59. Wang Yong, Yuan Guanglin, Wang Tengyan, et al. Fire test and numerical analysis on concrete slabs with bi-axial in-plane restraints[J]. China Civil Engineering Journal, 2018, 51(5):48-59. (in Chinese)
[29] Guo S, Bailey C G. Experimental behaviour of composite slabs during the heating and cooling fire stages[J]. Engineering Structures, 2011, 33:563-571.
[30] Akanshu S, Josipa B, Saskia B. Experimental investigations on residual bond performance in concrete subjected to elevated temperature[J]. Engineering Structures, 2019, 187:384-395.
[1] 杨勇, 魏博, 薛亦聪, 于云龙, 龚志超. 部分预制装配型钢混凝土柱火灾后偏压试验研究[J]. 工程力学, 2020, 37(3): 108-119.
[2] 肖福勤, 陈作钢, 代燚, 宋肖锋, 郭军, 余德海, 吴昊. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
[3] 王斌, 史庆轩, 蔡文哲, 彭一功, 李涵. RC带翼缘剪力墙变形能力计算方法研究[J]. 工程力学, 2020, 37(3): 167-175,216.
[4] 于金光, 刘利明, 郝际平. 部分组合框架-钢板剪力墙边框柱设计方法研究[J]. 工程力学, 2020, 37(2): 98-110.
[5] 程倩倩, 苏明周, 连鸣. 带可更换剪切型耗能梁段高强钢组合框筒的结构影响系数研究[J]. 工程力学, 2020, 37(2): 145-158.
[6] 王萌, 毕鹏, 李法雄. 带低屈服点钢材“延性保险丝”的钢框架盖板连接节点设计方法研究[J]. 工程力学, 2020, 37(2): 168-182.
[7] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
[8] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34-43.
[9] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201-210.
[10] 杨娜, 滕东宇. 藏式石砌体在剪-压复合作用下抗剪性能研究[J]. 工程力学, 2020, 37(2): 221-229.
[11] 李正农, 范晓飞, 蒲鸥, 郑义津, 宫博. 建筑物风沙流场与荷载的风洞试验研究[J]. 工程力学, 2020, 37(1): 152-158,182.
[12] 李补拴, 路瑶, 赵根田, 闻洋. PEC柱-异形钢梁框架中节点抗震性能试验研究[J]. 工程力学, 2020, 37(1): 126-134.
[13] 王鹏鹏, 郭晓霞, 桑勇, 邵龙潭, 陈之祥, 赵博雅. 基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟[J]. 工程力学, 2020, 37(1): 239-247.
[14] 郭迎庆, 李阳, 徐赵东, 陈笑, 王军建. 采用电动式激振器的混合试验系统设计[J]. 工程力学, 2020, 37(1): 108-114.
[15] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[7] 吴琛;周瑞忠. 小波基无单元法及其与有限元法的比较[J]. 工程力学, 2006, 23(4): 28 -32 .
[8] 黄煜镔;钱觉时;周小平. 基于强度尺寸效应的准脆性材料脆性指标研究[J]. 工程力学, 2006, 23(1): 38 -42,5 .
[9] 丁洁玉;潘振宽. 基于二阶常微分方程的多体系统动力学设计灵敏度分析的伴随变量方法[J]. 工程力学, 2006, 23(2): 56 -59 .
[10] 马力;吴林志;聂武. 在反平面变形下功能梯度压电板条的应力强度因子分析[J]. 工程力学, 2006, 23(1): 47 -51 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日