工程力学 ›› 2020, Vol. 37 ›› Issue (3): 176-187.doi: 10.6052/j.issn.1000-4750.2019.04.0231

• 土木工程学科 • 上一篇    下一篇

移动型下击暴流及其作用下高层建筑风荷载的数值模拟

李艺1, 黄国庆1,2, 程旭1, 赵丽娜3   

  1. 1. 西南交通大学土木工程系, 成都 610000;
    2. 重庆大学土木工程系, 重庆 400000;
    3. 资阳市自然资源和规划局, 资阳 641300
  • 收稿日期:2019-04-28 修回日期:2019-10-08 出版日期:2020-03-25 发布日期:2019-10-12
  • 通讯作者: 程旭(1989-),男,四川德阳人,博士生,主要从事结构风工程研究(E-mail:cx_swjtu@126.com). E-mail:cx_swjtu@126.com
  • 作者简介:李艺(1993-),女,四川成都人,硕士生,主要从事结构风工程研究(E-mail:lyanny@163.com);黄国庆(1976-),男,江苏南京人,教授,博士,博导,主要从事结构风工程研究(E-mail:ghuang1001@gmail.com);赵丽娜(1990-),女,陕西临渭人,公务员,硕士,主要从事结构风工程研究(E-mail:961538172@qq.com).
  • 基金资助:
    国家自然科学基金项目(51578471;51778546)

THE NUMERICAL SIMULATION OF MOVING DOWNBURSTS AND THEIR INDUCED WIND LOAD ON HIGH-RISE BUILDINGS

LI Yi1, HUANG Guo-qing1,2, CHENG Xu1, ZHAO Li-na3   

  1. 1. Department of Civil Engineering, Southwest Jiaotong University, Chengdu 610000, China;
    2. Department of Civil Engineering, Chongqing University, Chongqing 400000, China;
    3. Ziyang City Municipal Bureau of Natural Land and Resources, Ziyang 641300, China
  • Received:2019-04-28 Revised:2019-10-08 Online:2020-03-25 Published:2019-10-12

摘要: 下击暴流造成了大量的输电线塔、风机等结构的破坏,对其风场及其引起的结构风荷载研究非常迫切。该文基于RANS,利用SST k-ω湍流模型模拟了下击暴流风速特性及其作用下高层建筑的风荷载。对静止型下击暴流及其作用下高层建筑的风荷载进行了三维定常数值模拟,并将模拟结果与风洞试验结果相对比,结果表明:所建立的CFD计算模型能较好地模拟下击暴流及其作用下高层建筑的风荷载。借助于滑移网格技术对移动型下击暴流进行数值模拟,探究了相应的下击暴流风场及其对位于射流口中心移动路径上的高层建筑的风荷载。将该文模拟得到的移动型下击暴流径向风剖面与实测结果以及其他学者模拟结果相比较,吻合度较高,验证了凭借滑移网格技术能逼真地模拟出下击暴流的风场特性及其作用下高层建筑的风荷载。将静止型和移动型下击暴流的风场特性及其对建筑物的风压作用进行详细对比,研究结果表明:射流口的移动增强了运动方向的径向风速,减小了负方向的风速,并增大了建筑物表面的风压系数,这在结构设计中应予以考虑。

关键词: 结构工程, 移动下击暴流, CFD, 风场特性, 风荷载, 增强效应

Abstract: The downbursts cause damage to the structures of transmission line towers, wind turbines and so on. It is urgent to study the wind field and the downburst-induced structural wind load. Based on the RANS, computational fluid dynamics (CFD) numerical simulations using the SST k-ω turbulence model were conducted to study the wind field characteristics of downbursts and the wind load on high-rise buildings under the downbursts. A three-dimensional steady-state numerical simulation of a static downburst and the wind load on high-rise buildings under the downburst was carried out. The simulation results were compared with wind tunnel tests. The results show that the established CFD computational model can well simulate the downbursts and the wind load on high-rise buildings. Sliding grid is a technique that can accurately solve multi-motion reference system problems. The numerical simulation of moving downbursts using the sliding grid technology was conducted to study the corresponding downburst wind field and the wind load on high-rise buildings located on the moving path of a jet center. Comparing the radial wind profile of the moving downburst obtained with the measured results and the simulation results by other scholars. It is verified that the wind field characteristics of moving downbursts and the downburst-induced wind load on buildings can be realistically simulated with the aid of the sliding grid technique. A detailed comparison was made between the static and the moving downbursts in terms of wind field characteristics and the wind load on buildings. The results show that the overall movement of the jet port increases the radial wind speed in the moving direction, reduces the wind speed in the negative direction, and increases the pressure coefficient on the building surface. These effects should be considered in the structural design.

Key words: structural wind engineering, moving downburst, CFD, wind field characteristic, wind load, increasing effect

中图分类号: 

  • TU973+.32
[1] Dempsey D, White H. Winds wreak havoc on lines[J]. Transmission and Distribution World, 1996, 48(6):32-37.
[2] 唐建设. 结构在下击暴流作用下风荷载模拟及其动力响应分析[D]. 南京:东南大学, 2011. Tang Jianshe. Wind load simulation and dynamic response analysis of structure under downburst[D]. Nanjing:Southeast University, 2011. (in Chinese)
[3] Fujita T T. The downburst:Microburst and macroburst:Report of projects NIMROD and JAWS[R]. Satellite and Mesometeorology Research Project, Department of the Geophysical Sciences, University of Chicago, 1985.
[4] Hjelmfelt M R. Structure and life cycle of microburst outflows observed in Colorado[J]. Journal of Applied Meteorology, 1988, 27(8):900-927.
[5] Mccarthy J, Wilson J W, Fujita T T. The joint airport weather studies project[J]. Bulletin of the American Meteorological Society, 2013, 63(1):15-22.
[6] 黄国庆, 彭留留, 廖海黎, 等. 普立特大桥桥位处山区风特性实测研究[J]. 西南交通大学学报, 2016, 51(2/3), 349-356. Huang Guoqing, Peng Liuliu, Liao Haili, et al. Field measurement study on wind characteristics at Puli Great bridge site in mountainous area[J]. Journal of Southwest Jiaotong University, 2016, 51(2/3):349-356. (in Chinese)
[7] Chay M T, Letchford C W. Pressure distributions on a cube in a simulated thunderstorm downburst-Part A:Stationary downburst observations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(7):711-732.
[8] Choi E C C. Field measurement and experimental study of wind speed profile during thunderstorms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(3):275-290.
[9] Zhang Yan, Sarkar Partha, Hu Hui. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds[J]. Journal of Fluids and Structures, 2014, 50:547-564.
[10] Jesson M, Sterling M, Letchford C, et al. Aerodynamic forces on generic buildings subject to transient, downburst-type winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137:58-68.
[11] Selvam R P, Holmes J D. Numerical simulation of thunderstorm downdrafts[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44(1/2/3):2817-2825.
[12] Shehata A Y, Damatty A A E, Savory E. Finite element modeling of transmission line under downburst wind loading[J]. Finite Elements in Analysis & Design, 2006, 42(1):71-89.
[13] Sengupta A, Sarkar P P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(3):345-365.
[14] 李朝. 近地湍流风场的CFD模拟研究[D]. 黑龙江:哈尔滨工业大学, 2010. Li Chao. Study on CFD simulation of turbulence wind field near ground[D]. Helongjiang:Harbin Institute of Technology, 2010. (in Chinese)
[15] 党会学, 赵均海, 张宏杰. 下击暴流移动对其水平风速及影响高度的作用[J]. 应用力学学报, 2016, 33(3):477-482. Dang Huixue, Zhao Junhai, Zhang Hongjie. The effect of downburst movement on its horizontal wind speed and its influence height[J]. Chinese Journal of Applied Mechanics, 2016, 33(3):477-482. (in Chinese)
[16] Huang Guoqing, Liu Weizhan, Zhou Qiang, et al. Numerical study for downburst wind and its load on high rise building[J]. Wind and Structures, 2018, 27(2):89-100.
[17] Chowdhury Junayed, Chowdhury Jubayer, Dan Parvu, et al. Flow field dynamics of large-scale experimentally produced downburst flows[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019(188):61-79.
[18] 胡伟成, 杨庆山, 张建. 湍流边界层中三维山丘地形风场大涡模拟[J]. 工程力学, 2019, 36(4):72-79. Hu Weicheng, Yang Qingshan, Zhang Jian. LES study of turbulent boundary layers over three-dimensional hills[J]. Engineering Mechanics, 2019, 36(4):72-79. (in Chinese)
[19] Yumi Iida, Yasushi Uematsu. Numerical study of wind loads on buildings induced by downbursts[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019(191):103-116.
[20] Oscquera R M, Bowles R L. Simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow[R]. Washington DC:NASA Technical Memorandum, 1988.
[21] Vicroy D. A simple, analytical, axisymmetric microburst model for down-draft estimation[R]. Washington DC:NA SA Technical Memorandum, 1991.
[22] Holmes J D, Oliver S E. An empirical model of a down burst[J]. Engineering Structures, 2000, 22(9):1167-1172.
[23] Li C, Li Q S, Xiao Y Q, Ou J P. A revised empirical model and CFD simulations for 3D axisymmetric steady-state flows of downbursts and impinging jets[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012(102):48-60.
[24] 宋淳宸, 苏延文, 黄国庆, 等. 基于多元EMD-AM/FM分解的多点非平稳雷暴风速模拟[J]. 工程力学, 2019, 36(7):109-115. Song Chunchen, Su Yanwen, Huang Guoqing, et al. Multi-point non-stationary thunderstorm wind speed simulation based on multivariate EMD-AM/FM decomposition[J]. Engineering Mechanics, 2019, 36(7):109-115. (in Chinese)
[25] Chay M T. Physical modeling of thunderstorm downbursts for wind engineering applications[D]. Lubbock (TX, USA):Texas Tech University, 2001.
[26] 徐挺. 雷暴冲击风流场试验模拟[D]. 浙江:浙江大学, 2010. Xu Ting. The experimental simulation of thunderstorm down bursts[D]. Zhejiang:Zhejiang University, 2010. (in Chinese)
[27] Wood G S, Kwork K C S. Physical and numerical modeling of thunderstorm downbursts[C]. Proceedings of the Tenth International Conference on Wind Engineering, Denmark, June, 1999:1919-1924.
[28] 刘威展. 下击暴流的风场特性以及其作用下高层建筑风荷载研究[D]. 成都:西南交通大学, 2017. Liu Weizhan. Study on downburst and its effect on high rise building[D]. Chengdu:Southwest Jiaotong University, 2017. (in Chinese)
[29] Okuda, Y Taniike. Conical vortices over side face of a three-dimensional square prism[J]. Journal of Wind Engineering and Industria, 1993.
[30] Davenport A G. Progress in wind engineering:Proceedings of the 8th international conference on wind engineering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1992, 42(1/2/3):xv-xxxi.
[31] Holmes J D. A re-analysis of recorded extreme wind speeds in region A[J]. Australian Journal of Structural Engineering, 2002, 4(1):29-40.
[32] Chen Y, Liu G G, Sun B N. Dynamic response of flat roofs subjected to non-stationary moving microbursts[J]. Engineering Applications of Computational Fluid Mechanics, 2013, 7(4):519-532.
[33] Fujita T T. Objectives, operation and results of project NIMROD[C]. Proceedings of 11th Conference on Severe Local Storms (Kansas City, KS), American Meteorological Society, 1979:29-266.
[1] 肖福勤, 陈作钢, 代燚, 宋肖锋, 郭军, 余德海, 吴昊. 漂浮式光伏电站方阵环境载荷计算方法研究[J]. 工程力学, 2020, 37(3): 245-256.
[2] 苏小卒, 王伟. “依赖应变历史材料”结构动力松弛法静力分析中规避虚假应变历史的非线性弹性增量算法[J]. 工程力学, 2020, 37(3): 120-130.
[3] 俞怡恬, 黄生洪, 王新. 龙卷风冲击高层建筑气动力效应数值模拟[J]. 工程力学, 2020, 37(1): 168-174.
[4] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
[5] 安苗, 刘庆宽, 马文勇, 刘小兵. 椭圆形体育馆悬挑罩棚风荷载分布规律的试验研究[J]. 工程力学, 2019, 36(S1): 199-202.
[6] 钮鹏, 丁静姝, 金春福, 杨刚, 郭强. 残余应力对碳纤维增强压弯H型钢弹塑性稳定性的影响研究[J]. 工程力学, 2019, 36(S1): 31-36.
[7] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[8] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[9] 陈隽. 试论结构工程中的大数据:范式、技术与实例分析[J]. 工程力学, 2019, 36(6): 175-182.
[10] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[11] 李维勃, 王国砚, 钱志浩, 王昊. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
[12] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[13] 冯程远, 李国强, 蒋彬辉. 钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响研究[J]. 工程力学, 2019, 36(12): 24-36,78.
[14] 贾连光, 郎玉霄, 毕然, 宋中琦, 刘勐. 设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究[J]. 工程力学, 2019, 36(11): 168-182.
[15] 李天娥, 孙晓颖, 武岳, 王长国. 平流层飞艇气动阻力的参数分析[J]. 工程力学, 2019, 36(1): 248-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日