工程力学 ›› 2020, Vol. 37 ›› Issue (3): 167-175,216.doi: 10.6052/j.issn.1000-4750.2019.04.0219

• 土木工程学科 • 上一篇    下一篇

RC带翼缘剪力墙变形能力计算方法研究

王斌1,2,3, 史庆轩1,2,3, 蔡文哲2, 彭一功2, 李涵2   

  1. 1. 省部共建西部绿色建筑国家重点实验室/西安建筑科技大学, 西安 710055;
    2. 西安建筑科技大学土木工程学院, 西安 710055;
    3. 西安建筑科技大学结构工程与抗震教育部重点实验室, 西安 710055
  • 收稿日期:2019-04-24 修回日期:2019-11-16 出版日期:2020-03-25 发布日期:2019-11-29
  • 通讯作者: 蔡文哲(1990-),女,河南禹州人,博士生,主要从事钢与混凝土组合结构及抗震研究(E-mail:caiwenzhe000@163.com). E-mail:caiwenzhe000@163.com
  • 作者简介:王斌(1988-),男,陕西西安人,师资博士后,博士,主要从事混凝土结构及抗震研究(E-mail:wangbin@xauat.edu.cn);史庆轩(1963-),男,山东-城人,教授,博士,博导,主要从事高层建筑结构及抗震研究(E-mail:shiqx@xauat.edu.cn);彭一功(1995-),男,陕西商洛人,硕士生,主要从事结构多维抗震研究(E-mail:446162873@qq.com);李涵(1995-),男,山西运城人,硕士生,主要从事结构抗剪研究(E-mail:lh113411@163.com).
  • 基金资助:
    国家自然科学基金项目(51808435,51878540);中国博士后科学基金面上项目(2018M643594);陕西省自然科学基础研究计划项目(2019JQ-199);陕西省高校科协青年人才托举计划项目(20190419)

RESEARCH ON THE CALCULATION METHOD FOR THE DEFORMATION CAPACITY OF RC SHEAR WALLS WITH A FLANGE

WANG Bin1,2,3, SHI Qing-xuan1,2,3, CAI Wen-zhe2, PENG Yi-gong2, LI Han2   

  1. 1. State Key Laboratory of Green Building in Western China, Xi'an University of Architecture&Technology, Xi'an 710055, China;
    2. School of Civil Engineering, Xi'an University of Architecture&Technology, Xi'an 710055, China;
    3. Key Laboratory of Structural Engineering and Seismic Resistance Education, Xi'an University of Architecture&Technology, Xi'an 710055, China
  • Received:2019-04-24 Revised:2019-11-16 Online:2020-03-25 Published:2019-11-29

摘要: 通过3个T形截面RC剪力墙的拟静力试验,分析了各变形分量所占比重及其在加载过程中的变化规律。以此为基础,基于截面的弯矩-曲率分析,采用考虑等效塑性铰区高度变化的集中塑性铰模型建立了墙肢弯曲变形计算方法,通过对Lowes滑移模型的修正建立了纵筋滑移引起的变形计算方法,根据剪应变与曲率间的线性关系建立了剪切变形计算方法。据此提出了一种全新的考虑弯曲、纵筋滑移和剪切变形贡献的带翼缘剪力墙荷载-变形分析模型,其计算结果与试验吻合良好。研究表明,该文提出的分析模型不但变形分量计算明确,对层间位移及任意高度处的变形均可做出准确估计,同时对于不同截面形式的剪力墙具有广泛的适用性,为性能设计和性能评估提供了一种有效的分析手段,可供工程设计参考。

关键词: 钢筋混凝土, T形墙, 拟静力试验, 变形分析, 变形能力, 计算模型

Abstract: Through quasi-static tests on three T-shaped reinforced concrete shear walls, the proportion of each deformation component and its variation in the loading process were analyzed. Based on the experimental observation and a moment-curvature analysis, a method for calculating the flexural deformation of the wall panel was established by using the plastic hinge model with the change of the equivalent plastic hinge height taken into consideration. A method for calculating the deformation caused by the slip of longitudinal bars was established by modifying the slip model by Lowes. A method for calculating the shear deformation was established based on the linear relationship between the shear strain and curvature. Accordingly, a new load-deformation analysis model including the contributions of flexural, slip and shear deformations was proposed. The good agreement between the analytical and experimental results confirmed the validity of the proposed model. The research shows that the proposed model not only has a clear determination on each deformation component, but also can accurately estimate the story drift and the deformations at any height. Furthermore, the proposed model is applicable to shear walls with different cross sections, and provides an effective analysis method for the performance design and performance evaluation, which can be used as a reference for engineering design.

Key words: reinforced concrete, T-shaped wall, quasi-static test, deformation analysis, deformation capacity, calculation model

中图分类号: 

  • TU973.16
[1] 党争, 梁兴文, 邓明科. 考虑压-弯-剪相互作用的纤维混凝土剪力墙变形能力分析[J]. 工程力学, 2014, 31(1):113-121. Dang Zheng, Liang Xingwen, Deng Mingke. Deformation capacity analysis of fiber concrete shear wall considering axial-flexure-shear interaction[J]. Engineering Mechanics, 2014, 31(1):113-121. (in Chinese)
[2] 徐龙河, 肖水晶, 卢啸, 等. 钢筋混凝土剪力墙基于变形和滞回耗能非线性组合的损伤演化分析[J]. 工程力学, 2017, 34(8):117-124. Xu Longhe, Xiao Shuijing, Lu Xiao, et al. Damage evolution anslysis of RC shear wall based on nonlinear combination of deformation and hysteretic energy[J]. Engineering Mechanics, 2017, 34(8):117-124. (in Chinese)
[3] Paulay T, Priestley M J N. Stability of ductile structural walls[J]. ACI Structural Journal, 1993; 90(4):385-392.
[4] 黄志华, 吕西林, 周颖. 钢筋混凝土剪力墙的变形能力及基于性能的抗震设计[J]. 地震工程与工程震动, 2009, 29(5):86-92. Huang Zhihua, Lu Xilin, Zhou Ying. Deformation capacity and performancebased seismic design for reinforced concrete shear walls[J]. Earthquake Engineering and Vibration, 2009, 29(5):86-92. (in Chinese)
[5] 钱稼茹, 徐福江. 钢筋混凝土剪力墙基于位移的变形能力设计方法[J]. 清华大学学报(自然科学版), 2007, 47(3):305-308. Qian Jiaru, Xu Fujiang. Displacement-based deformation capacity method of cantilever walls[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(3):305-308. (in Chinese)
[6] Park R, Paulay T. Reinforced concrete structures[M]. New York:John Wiley & Sons, 1975.
[7] 张松, 吕西林, 章红梅. 钢筋混凝土剪力墙构件极限位移的计算方法及试验研究[J]. 土木工程学报, 2009, 42(4):10-16. Zhang Song, Lu Xilin, Zhang Hongmei. Experimental and analytical studies on the ultimate displacement of RC shear walls[J]. China Civil Engineering Journal, 2009, 42(4):10-16. (in Chinese)
[8] 梁兴文, 郑雨, 邓明科, 等. 塑性铰区采用纤维增强混凝土剪力墙的变形性能研究[J]. 工程力学, 2013, 30(3):256-262. Liang Xingwen, Zheng Yu, Deng Mingke, et al. An investigation of deformation behavior of the shear wall with fiber reinforced concrete in plastic hinge region[J]. Engineering Mechanics, 2013, 30(3):256-262. (in Chinese)
[9] Thomsen J H, Wallace J W. Displacement-based design of RC structural walls:experimental studies of walls with rectangular and T-shaped cross sections[R]. Potsdam:Clarkson University, 1995.
[10] Beyer K, Dazio A. Priestley M J N. Quasi-static cyclic tests of two U-shaped reinforced concrete walls[J]. Journal of Earthquake Engineering, 2008, 12(7):1023-1053.
[11] Zhang Z W, Li B. Seismic performance assessment of slender T-shaped reinforced concrete walls[J]. Journal of Earthquake Engineering, 2016, 20(8):1342-1369.
[12] Zhang Z W, Li B. Seismic behaviour of nonrectangular structural RC wall in the weak axis[J]. Magazine of Concrete Research, 2017, 69(12):606-617.
[13] 史庆轩, 王斌, 何伟锋, 等. 带翼缘钢筋混凝土剪力墙抗震性能试验研究[J]. 建筑结构学报, 2017, 38(1):106-115. Shi Qingxuan, Wang Bin, He Weifeng, et al. Experimental research on seismic behavior of reinforced concrete shear walls with flange[J]. Journal of Building Structures, 2017, 38(1):106-115. (in Chinese)
[14] Dazio A H. Seismic design of buildings with structural walls[D]. Zurich:ETH, 2000.
[15] Hines E M. Seismic performance of hollow rectangular reinforced concrete bridge piers with confined corner elements[D]. USA:San Diego, University of California (UCSD), 2002.
[16] Beyer K, Dazio A, Priestley M J N. Shear deformations of slender reinforced concrete walls under seismic loading[J]. ACI Structural Journal, 2011, 108(2):167-177.
[17] Mostafaei H, Vecchio F J. Uniaxial shear-flexure model for reinforced concrete elements[J]. Journal of Structural Engineering, 2008, 134(9):1538-1547.
[18] 党争, 梁兴文, 于靖. 纤维混凝土剪力墙压弯剪耦合作用的变形能力分析[J]. 建筑结构学报, 2014, 35(8):105-112. Dang Zheng, Liang Xingwen, Yu Jing. Nonlinear analysis of axial-flexure-shear coupling behavior of fiber reinforced concrete shear walls[J]. Journal of Building Structures, 2014, 35(8):105-112. (in Chinese)
[19] Wang B, Shi Q X, Cai W Z. Decoupling and analysis of the deformation of flanged reinforced concrete shear walls[J]. The Structural Design of Tall and Special Buildings, 2019, 28(13):e1628.
[20] Lowes L, Altoontash A. Modeling reinforced concrete beam-column joints subjected to cyclic loading[J]. Journal of Structural Engineering, 2003, 129(12):1686-1697.
[21] Eligehausen R, Popov E P, Bertero V V. Local bond stress-slip relationships of deformed bars under generalized xxcitations[R]. San Francisco:University of California, Berkeley, 1983.
[22] Priestley M J N, Calvi G M, Kowalsky M. Displacement-based seismic design of structures[M]. Pavia, Italy:IUSS Press, 2007.
[23] 史庆轩, 梁兴文. 高层建筑结构设计[M]. 北京:科学出版社, 2006. Shi Qingxuan, Liang Xingwen. Design of tall building structures[M]. Beijing:Science Press, 2006. (in Chinese)
[24] Brueggen B L. Performance of T-shaped reinforced concrete structural walls under multi-directional loading[D]. Minneapolis:University of Minnesota, 2009.
[1] 李磊, 王卓涵, 张艺欣, 郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究[J]. 工程力学, 2020, 37(3): 88-97.
[2] 凌道盛, 巩师林, 胡成宝, 钮家军. 非连续变形分析的若干问题[J]. 工程力学, 2020, 37(3): 1-7.
[3] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[4] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[5] 王丽萍, 罗文文, 刘思危, 张伟, 蒋利成, 杨仕建. 考虑梁轴向约束效应的RC梁柱节点受力机理及抗震性能试验研究[J]. 工程力学, 2020, 37(2): 159-167,191.
[6] 金浏, 王涛, 杜修力, 夏海. 钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究[J]. 工程力学, 2020, 37(1): 53-62.
[7] 李达, 牟在根. 内嵌VV-SPSW平面钢框架结构抗震性能研究[J]. 工程力学, 2019, 36(S1): 210-216.
[8] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[9] 焦驰宇, 马银强, 刘陆宇, 龙佩恒, 侯苏伟. FPS支座双向加载拟静力试验与数值模拟研究[J]. 工程力学, 2019, 36(S1): 86-91.
[10] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[11] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[12] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[13] 徐龙河, 孙雨生, 要世乾, 李忠献. 装配式自复位耗能支撑恢复力模型与试验验证[J]. 工程力学, 2019, 36(6): 119-127,146.
[14] 邓明科, 李彤, 樊鑫淼. 高延性混凝土加固砖柱轴压性能试验研究[J]. 工程力学, 2019, 36(5): 92-99.
[15] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[3] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[4] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[5] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[6] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[7] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[8] 左志亮;蔡健;钟国坤;杨春;. 带约束拉杆T形截面钢管内核心混凝土的等效单轴本构关系[J]. 工程力学, 2011, 28(11): 104 -113 .
[9] 田力;高芳华. 地下隧道内爆炸冲击下地表多层建筑的动力响应研究[J]. 工程力学, 2011, 28(11): 114 -123 .
[10] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日