工程力学 ›› 2020, Vol. 37 ›› Issue (3): 8-17.doi: 10.6052/j.issn.1000-4750.2019.04.0212

• 基本方法 • 上一篇    下一篇

基于有限质点法的含间隙铰平面机构动力分析

郑延丰1,2, 杨超1,2, 刘磊1,3, 罗尧治1,2   

  1. 1. 浙江大学空间结构研究中心, 浙江, 杭州 310058;
    2. 浙江省空间结构重点实验室, 浙江, 杭州 310058;
    3. 浙江绿城元和房地产开发有限公司, 浙江, 杭州 310058
  • 收稿日期:2019-04-22 修回日期:2019-08-02 出版日期:2020-03-25 发布日期:2019-09-09
  • 通讯作者: 罗尧治(1966-),男,浙江人,教授,博士,院长,主要从事空间结构研究(E-mail:luoyz@zju.edu.cn). E-mail:luoyz@zju.edu.cn
  • 作者简介:郑延丰(1987-),男,福建人,博士后,博士,主要从事空间结构研究(E-mail:yanfeng39@zju.edu.cn);杨超(1986-),男,浙江人,博士后,博士,主要从事空间结构研究(E-mail:04tmgcyc@zju.edu.cn);刘磊(1991-),男,河南人,工程师,硕士,主要从事空间结构研究(E-mail:1056275393@qq.com).
  • 基金资助:
    国家重点研发计划项目(2016YFC0800200);国家自然科学基金项目(51578494;51778568,51908492);中央高校基本科研业务费专项资金项目(2019QNA4043)

DYNAMICS ANALYSIS OF PLANAR MECHANISM WITH REVOLUTE JOINT CLEARANCE BASED ON FINITE PARTICLE METHOD

ZHENG Yan-feng1,2, YANG Chao1,2, LIU Lei1,3, LUO Yao-zhi1,2   

  1. 1. Space Structure Research Center of Zhejiang University, Hangzhou, Zhejiang 310058, China;
    2. Key Laboratory of Space Structures of Zhejiang Province, Hangzhou, Zhejiang 310058, China;
    3. Zhejiang Greentown Yuanhe Real Estate Development Co., Ltd, Hangzhou, Zhejiang 310058, China
  • Received:2019-04-22 Revised:2019-08-02 Online:2020-03-25 Published:2019-09-09

摘要: 间隙的存在使得铰节点的轴承和轴颈易发生碰撞,从而使带间隙机构的动力响应与理想机构不同。基于有限质点法,对含间隙铰的平面机构开展动力分析。首先给出有限质点法的质点运动控制方程和平面梁单元的内力计算公式。然后引入Lankarani-Nikravesh模型和修正库仑摩擦模型,来计算间隙铰中轴承和轴颈碰撞过程中的接触力和摩擦力。对平面四杆机构和曲柄滑块机构开展了动力分析,验证了该文方法的正确性和有效性。分析结果表明:间隙铰对机构运动的位移和速度影响不大,但使加速度有较大振荡;相比于理想铰,间隙铰的接触力峰值也有较大的增加;相比于刚性机构,柔性机构中间隙铰导致的动力响应要小;而相比于单个间隙铰,多个间隙铰将增大机构的动力效应。

关键词: 有限质点法, 平面机构, 铰节点, 间隙, 动力分析

Abstract: The presence of the clearance in a planar revolute joint makes the journal of the joint easy to collide with the bearing, so that the dynamic responses of the mechanism with clearance revolute joints are different from an ideal mechanism. Based on the finite particle method (FPM), conducts the dynamics analysis on the planar mechanism with revolute joint clearance. Firstly, the particle motion governing equations and the internal force formula of the planar beam element of the FPM are developed. Then the Lankanani-Nikravesh model and a modified Coulomb friction model are introduced to calculate the contact as well as friction forces during the collision of the bearing and the journal in a clearance joint. The dynamics analysis of a planar four-bar mechanism and a slider-crank mechanism are conducted, and the correctness and effectiveness of the proposed method are validated. The results show that:a clearance joint has little effect on the displacement and velocity of mechanism motion, but the oscillation of acceleration appears due to the clearance. Compared with an ideal joint, the peak value of the contact force in a clearance joint increases dramatically. The dynamic responses of a flexible mechanism due to joint clearance is small compared to the response of a rigid mechanism. The existence of multiple clearance joints increases the dynamic responses of the mechanism than the existence of a single clearance joint.

Key words: finite particle method (FPM), planar mechanism, revolute joint, clearance, dynamics analysis

中图分类号: 

  • TH112.1
[1] Brach R M, Goldsmith W. Mechanical impact dynamics:Rigid body collisions[J]. Journal of Engineering for Industry, 1991, 113(2):248.
[2] Hertz H. On the contact of solids-On the contact of rigid elastic solids and on hardness[J]. Miscellaneous Papers, 1896:146-183.
[3] Lankarani H M, Nikravesh P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design, 1990, 112(3):369-376.
[4] Bai Z F, Zhao Y. A hybrid contact force model of revolute joint with clearance for planar mechanical systems[J]. International Journal of Non-Linear Mechanics, 2013, 48:15-36.
[5] Xuchong Zhang, Xianmin Zhang, Zhong Chen. Dynamic analysis of a 3-RRR parallel mechanism with multiple clearance joints[J]. Mechanism and Machine Theory, 2014, 78:105-115.
[6] Dardel M, Yaqubi S, Mohammadi Daniali H, et al. Nonlinear dynamics and control of crank-slider mechanism with multiple clearance joints[J]. Journal of Theoretical and Applied Vibration and Acoustics, 2015, 1(1):21-31.
[7] Yaqubi S, Dardel M, Daniali H M. Nonlinear dynamics and control of crank-slider mechanism with link flexibility and joint clearance[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(5):737-755.
[8] Simo J C, Vu-Quoc L. On the dynamics in space of rods undergoing large motions-A geometrically exact approach[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 66(2):125-161.
[9] Shabana A A. Definition of ANCF finite elements[J]. ASME. J. Comput. Nonlinear Dynam, September 2015:10(5):054506. https://doi.org/10.1115/1.4030369.
[10] Flores P, Koshy C S, Lankarani H M, et al. Numerical and experimental investigation on multibody systems with revolute clearance joints[J]. Nonlinear Dynamics, 2011, 65(4):383-398.
[11] Flores P. A parametric study on the dynamic response of planar multibody systems with multiple clearance joints[J]. Nonlinear Dynamics, 2010, 61(4):633-653.
[12] Tian Q, Zhang Y, Chen L, et al. Simulation of planar flexible multibody systems with clearance and lubricated revolute joints[J]. Nonlinear Dynamics, 2010, 60(4):489-511.
[13] Flores P, Lankarani H M. Dynamic response of multibody systems with multiple clearance joints[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(3):31003.
[14] 罗尧治, 郑延丰, 杨超, 等. 结构复杂行为分析的有限质点法研究综述[J]. 工程力学, 2014, 31(8):1-7. Luo Yaozhi, Zheng Yanfeng, Yang Chao, et al. Review of the finite particle method for complex behaviors of structures[J]. Engineering Mechanics, 2014, 31(8):1-7. (in Chinese)
[15] Yu Y, Luo Y. Finite particle method for kinematically indeterminate bar assemblies[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2009, 10(5):669-676.
[16] Belytschko T, Tsay C S. WHAMSE:a program for three-dimensional nonlinear structural dynamics[R]. Evanston, IL:Northwestern University, 1982.
[17] 喻莹. 基于有限质点法的空间钢结构连续倒塌破坏研究[D]. 浙江:浙江大学, 2010. Yu Ying. Progressive collapse of space steel structures based on the finite particle method[D]. Zhejiang:Zhejiang University, 2010. (in Chinese)
[18] Ambrósio J. Impact of rigid and flexible multibody systems:Deformation description and contact models[M]. Dordrecht:Virtual Nonlinear Multibody Systems, Springer, 2003:57-81.
[19] Flores P, Ambrósio J, Claro J P, et al. Dynamic behaviour of planar rigid multi-body systems including revolute joints with clearance[J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics, 2007, 221(2):161-174.
[20] Erkaya S. Effects of balancing and link flexibility on dynamics of a planar mechanism having joint clearance[J]. Scientia Iranica, 2012, 19(3):483-490.
[1] 任叶飞, 尹建华, 温瑞智, 冀昆. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115-125.
[2] 蒋亦庞, 苏亮, 黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159-167.
[3] 曹胜涛, 李志山, 刘付钧, 黄忠海. 基于Bouc-Wen模型的消能减震结构显式非线性时程分析[J]. 工程力学, 2019, 36(S1): 17-24.
[4] 杨超, 罗尧治, 郑延丰. 正交异性膜材大变形行为的有限质点法求解[J]. 工程力学, 2019, 36(7): 18-29.
[5] 杨浩文, 吴斌, 潘天林, 谢金哲. Timoshenko梁能量守恒逐步积分算法[J]. 工程力学, 2019, 36(6): 21-28.
[6] 田小红, 苏明周, 连鸣, 李慎, 王凤. 高强钢组合K形偏心支撑钢框架抗震性能分析[J]. 工程力学, 2019, 36(3): 182-191.
[7] 曹胜涛, 路德春, 杜修力, 赵密, 程星磊. 基于GPU并行计算的地下结构非线性动力分析软件平台开发[J]. 工程力学, 2019, 36(2): 53-65,86.
[8] 喻莹, 刘飞鸿, 王钦华, 罗尧治, 李洋. 有限质点法阻尼构造问题的研究[J]. 工程力学, 2019, 36(11): 34-40.
[9] 贾宏宇, 杜修力, 李兰平, 黄胜前, 郑史雄. 地震作用下梁体碰撞间隙宽度的概率分析方法[J]. 工程力学, 2018, 35(8): 39-45.
[10] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[11] 王丰, 李宏男. 基于简化IDA的结构地震损伤评估方法[J]. 工程力学, 2018, 35(12): 194-202.
[12] 曹胜涛, 李志山, 刘付钧. 一种非比例振型阻尼模型及在大规模非线性分析中的应用[J]. 工程力学, 2018, 35(11): 162-171.
[13] 陈力波, 王嘉嘉, 上官萍. 公路斜交梁桥地震易损性模型研究[J]. 工程力学, 2018, 35(1): 160-171,181.
[14] 刘晶波, 宝鑫, 谭辉, 王东洋, 李雪. 环形含液容器动力分析[J]. 工程力学, 2018, 35(1): 66-73.
[15] 谢楠, 武桐, 胡杭, 李鸿飞. 混凝土浇筑期泵管撞击荷载的试验研究[J]. 工程力学, 2017, 34(增刊): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日