工程力学 ›› 2020, Vol. 37 ›› Issue (3): 131-141,148.doi: 10.6052/j.issn.1000-4750.2019.04.0192

• 土木工程学科 • 上一篇    下一篇

考虑行波效应的大跨度矮塔斜拉桥耐震时程分析

沈禹1, 谈华顺2, 王献挚1, 李建中1   

  1. 1. 同济大学土木工程防灾国家重点实验室, 上海 200092;
    2. 浙江省交通规划设计研究院有限公司, 浙江, 杭州 310006
  • 收稿日期:2019-04-14 修回日期:2019-09-27 出版日期:2020-03-25 发布日期:2019-10-25
  • 通讯作者: 李建中(1963-),男,湖北人,教授,博士,博导,副院长,主要从事桥梁抗震、减震和车桥振动研究(E-mail:lijianzh@tongji.edu.cn). E-mail:lijianzh@tongji.edu.cn
  • 作者简介:沈禹(1991-),男,江苏人,博士生,主要从事桥梁抗震方面的研究(E-mail:yushen@tongji.edu.cn);谈华顺(1990-),男,湖北人,硕士,主要从事桥梁健康监测与试验检测的研究(E-mail:tanhuashun@126.com);王献挚(1993-),男,福建人,博士生,主要从事桥梁抗震方面的研究(E-mail:tj_wxz@tongji.edu.cn).
  • 基金资助:
    国家自然科学基金重点项目(51838010);国家自然科学基金面上项目(51678434)

APPLICATION OF THE ENDURANCE TIME METHOD TO SEISMIC-INDUCED POUNDING ANALYSIS FOR LONG-SPAN EXTRADOSED CABLESTAYED BRIDGES CONSIDERING WAVE PASSAGE EFFECTS

SHEN Yu1, TAN Hua-shun2, WANG Xian-zhi1, LI Jian-zhong1   

  1. 1. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;
    2. Zhejiang Provincial Institute of Communications Planning, Design and Research, Hangzhou, Zhejiang 310006, China
  • Received:2019-04-14 Revised:2019-09-27 Online:2020-03-25 Published:2019-10-25

摘要: 耐震时程法(ETM)是一种采用幅值随时间不断增大的人工地震动作为输入的新型动力分析方法,其只需通过少量的数值运算便可得到不同地震强度下的结构响应。基于此优势,该文探索了在考虑行波效应下,耐震时程法预测大跨度矮塔斜拉桥地震碰撞响应的精确性和有效性。以一座两侧建有桥台的典型山谷地带矮塔斜拉桥为研究对象,通过与天然地震输入下的增量动力分析(IDA)结果进行对比,验证耐震时程法捕捉地震碰撞响应的可行性;并采用此方法参数化分析了不同地震动视波速对碰撞力、塔梁位移和墩柱曲率响应的影响。研究结果表明:耐震时程法能够高效地预测出考虑行波效应的矮塔斜拉桥地震碰撞响应;此外,行波效应对大跨桥梁地震碰撞响应的影响存在两面性,与结构是否进入非线性以及地震动强度和视波速大小有关。

关键词: 矮塔斜拉桥, 地震, 行波效应, 碰撞响应, 耐震时程法

Abstract: The endurance time method (ETM) is a novel dynamic analysis procedure in which artificially intensified accelerograms are used as loading inputs. In this method, various dynamic responses under seismic excitations of different intensity levels are estimated with a reduced simulation effort. Based on these merits, this paper investigated the accuracy and effectiveness of ETM in predicting the pounding responses of long-span extradosed cable-stayed bridges considering wave-passage effects. A typical extradosed cable-stayed bridge with two-side abutments in the valley was selected as the analyzed target, and the incremental dynamic analysis (IDA) results with natural earthquake records were obtained to make a comparison. Parametric analyses on the wave-passage effect with different apparent wave velocities were carried out by ETM. The concerned responses included the pounding force, the displacement of bridge deck and towers and the curvature ductility factors of bridge piers. The results indicate that ETM can efficiently predict the seismic-induced pounding response of long-span extradosed cable-stayed bridges with the inclusion of wave-passage effects. In addition, the dual effects of wave-passage on seismic-induced pounding response, which are related to structural nonlinearity, seismic amplitude and apparent wave velocity, were observed.

Key words: extradosed cable-stayed bridges, seismic, wave passage effects, pounding response, ETM

中图分类号: 

  • U448.27
[1] 陈从春, 周海智, 肖汝诚. 矮塔斜拉桥研究的新进展[J]. 世界桥梁, 2006(1):70-73. Chen Congchun, Zhou Haizhi, Xiao Rucheng. Recent research advancement of extradosed cable-stayed bridge[J].World Bridges, 2006(1):70-73. (in Chinese)
[2] 李小珍, 刘桢杰, 雷虎军, 等. 行波效应对矮塔斜拉桥弹塑性地震响应的影响[J]. 铁道工程学报, 2015, 32(11):49-54. Li Xiaozhen, Liu Zhenjie, Lei Hujun, et al. Effect of travelling wave on elastic-plastic seismic response of low-pylon cable-stayed bridge[J]. Journal of Railway Engineering Society, 2015, 32(11):49-54. (in Chinese)
[3] 项海帆. 斜张桥在行波作用下的地震反应分析[J]. 同济大学学报, 1983(2):4-12. Xiang Haifan. Earthquake response analysis of cablestayed bridges under the action of travelling waves[J]. Journal of Tongji University, 1983(2):4-12. (in Chinese)
[4] 黄学漾, 宗周红, 夏坚, 等. 强震作用下独塔斜拉桥模型的非线性动力响应分析[J]. 东南大学学报:自然科学版, 2015, 45(2):354-359. Huang Xueyang, Zong Zhouhong, Xia Jian, et al. Nonlinear dynamic response analysis of cable-stayed bridge with single tower under strong earthquake excitations[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(2):354-359. (in Chinese)
[5] 布占宇, 谢旭, 郑荣跃. 索-桥动态相互作用及行波效应对斜拉桥地震反应的影响[J]. 地震工程与工程振动, 2011, 31(2):82-90. Bu Zhanyu, Xie Xu, Zheng Rongyue. Study on effects of travelling waves on the seismic responses of cablestayed bridges in consideration of dynamic cable-deck interaction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(2):82-90. (in Chinese)
[6] 闫聚考, 李建中, 彭天波, 等. 三塔两跨悬索桥行波效应振动台试验及数值研究[J]. 振动与冲击, 2016, 35(7):44-48. Yan Jukao, Li Jianzhong, Peng Tianbo, et al. Shake table tests and numerical analysis for traveling wave effect of a three-tower two-span suspension bridge[J]. Journal of Vibration and Shock, 2016, 35(7):44-48. (in Chinese)
[7] 孙利民, 谢文, 楼梦麟, 等. 行波激励下桩-土-斜拉桥多点振动台试验[J]. 中国公路学报, 2017, 30(12):221-233. Sun Limin, Xie Wen, Lou Menglin, et al. Multiple shaking table tests on pile-soil-cable-stayed bridge under travelling wave excitations[J]. China Journal of Highway and Transport, 2017, 30(12):221-233. (in Chinese)
[8] 吴巧云, 王涛, 魏敏, 等. 基于地震碰撞易损性的相邻结构临界间距研究[J]. 工程力学, 2019, 36(7):89-98. Wu Qiaoyun, Wang Tao, Wei Min, et al. Study on the critical separation distance of adjacent structures based on seismic pounding fragility[J]. Engineering Mechanics, 2019, 36(7):89-98. (in Chinese)
[9] Zheng Y, Xiao X, Zhi L, et al. Evaluation on impact interaction between abutment and steel girder subjected to nonuniform seismic excitation[J]. Shock and Vibration 2015:981804.
[10] Won J H, Mha H S, Kim S H. Effects of the earthquake-induced pounding upon pier motions in the multi-span simply supported steel girder bridge[J]. Engineering Structures, 2015, 93:1-12.
[11] 闫聚考, 李建中, 彭天波, 等. 大跨度悬索桥主引桥碰撞效应振动台试验及数值研究[J]. 振动与冲击, 2017, 36(7):234-240. Yan Jukao, Li Jianzhong, Peng Tianbo, et al. Shaking table tests and numerical analysis for pounding analysis between main span and approach span of long-span suspension bridge[J]. Journal of Vibration and Shock, 2017, 36(7):234-240. (in Chinese)
[12] Estekanchi H E, Valamanesh V, Vafai A. Application of endurance time method in linear seismic analysis[J]. Engineering Structures, 2007, 29(10):2551-2562.
[13] 白久林, 欧进萍. 基于耐震时程法的钢筋混凝土框架结构抗震性能评估[J]. 工程力学, 2016, 33(10):86-96. Bai Jiulin, Ou Jinping. Seismic performance evaluation of reinforced concrete frame structure using the endurance time method[J]. Engineering Mechanics, 2016, 33(10):86-96. (in Chinese)
[14] 白久林. 钢筋混凝土框架结构地震失效模式分析与优化[D]. 哈尔滨:哈尔滨工业大学, 2015. Bai Jiulin. Main seismic failure mode analyses and optimization of reinforced concrete frame structures[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
[15] Rahimi E, Estekanchi H E. Collapse assessment of steel moment frames using endurance time method[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(2):347-360.
[16] Mirzaee A, Estekanchi H E. Performance-based seismic retrofitting of steel frames by the endurance time method[J]. Earthquake spectra, 2015, 31(1):383-402.
[17] Estekanchi H E, Alembagheri M. Seismic analysis of steel liquid storage tanks by endurance time method[J]. Thin-Walled Structures, 2012, 50(1):14-23.
[18] Hariri-Ardebili M A, Furgani L, Meghella M, et al. A new class of seismic damage and performance indices for arch dams via ETA method[J]. Engineering Structures, 2016, 110:145-160.
[19] Bai J, Jin S, Zhao J, et al. Seismic performance evaluation of soil-foundation-reinforced concrete frame systems by endurance time method[J]. Soil Dynamics and Earthquake Engineering, 2019, 118:47-51.
[20] Guo A, Shen Y, Bai J, et al. Application of the endurance time method to the seismic analysis and evaluation of highway bridges considering pounding effects[J]. Engineering Structures, 2017, 131:220-230.
[21] Valamanesh V, Estekanchi H E, Vafai A. Characteristics of second generation endurance time acceleration functions[J]. Scientia Iranica, 2010, 17(1):53-61.
[22] Gasparini D, Vanmarcke E H. SIMQKE:Gram for artificial motion generation[D]. Cambridge:Massachusetts Institute of Technology, 1976.
[23] 田玉基, 杨庆山. 地震地面运动作用下结构反应的分析模型[J]. 工程力学, 2005, 22(6):170-174. Tian Yuji, Yang Qingshan. Analysis models and methods for structural seismic responses[J]. Engineering Mechanics, 2005, 22(6):170-174. (in Chinese)
[24] 王琦. 多塔矮塔斜拉桥振动台模型试验与分析[D]. 上海:同济大学, 2019. Wang Qi. Shaking table model test and analysis of multi-tower extra-dosed cable-stayed bridge[D]. Shanghai:Tongji University, 2019. (in Chinese)
[25] Aviram A, Mackie K R, Stojadinović B. Guidelines for nonlinear analysis of bridge structures in California[R]. Berkeley:University of California, Pacific Earthquake Engineering Research Center, 2008.
[26] 艾庆华, 王东升, 李宏男, 等. 基于塑性铰模型的钢筋混凝土桥墩地震损伤评价[J]. 工程力学, 2009, 26(4):158-166. Ai Qinghua, Wang Dongsheng, Li Hongnan, et al. Seismic damage evaluation of RC bridge columns based on plastic hinge model[J]. Engineering Mechanics, 2009, 26(4):158-166. (in Chinese)
[27] Ernst J H. Der E-Modul von Seilen unter berucksichtigung des Durchhanges[J]. Der Bauingenieur, 1965, 40(2):52-55.
[28] Shakya K, Wijeyewickrema A C. Mid-column pounding of multi-story reinforced concrete buildings considering soil effects[J]. Advances in Structural Engineering, 2009, 12(1):71-85.
[29] Jankowski R, Wilde K, Fujino Y. Pounding of superstructure segments in isolated elevated bridge during earthquakes[J]. Earthquake Engineering and Structural Dynamics, 1998, 27(5):487-502.
[30] Vamvatsikos D, Cornell C A. Applied incremental dynamic analysis[J]. Earthquake Spectra, 2004, 20(2):523-553.
[31] 吕大刚, 于晓辉, 王光远. 基于单地震动记录IDA方法的结构倒塌分析[J]. 地震工程与工程振动, 2009, 29(6):33-39. Lü Dagang, Yu Xiaohui, Wang Guangyuan. Structural collapse analysis based on single-record IDA method[J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(6):33-39. (in Chinese)
[32] 沙奔, 王浩, 陶天友, 等. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3):193-199. Sha Ben, Wang Hao, Tao Tianyou, et al. Analysis on pounding response of isolated continuous girder bridge considering concrete damage[J]. Engineering Mechanics, 2018, 35(3):193-199. (in Chinese)
[1] 赵鹏举, 于晓辉, 陆新征. 基于显式算法的RC框架结构抗地震倒塌能力分析[J]. 工程力学, 2020, 37(3): 77-87.
[2] 邱意坤, 周长东, 张光伟. 三维地震动作用下适用于高耸结构的地震动强度指标[J]. 工程力学, 2020, 37(3): 98-107.
[3] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[4] 蒋亦庞, 苏亮, 黄鑫. 考虑参数不确定性的无筋砌体结构地震易损性分析[J]. 工程力学, 2020, 37(1): 159-167.
[5] 任叶飞, 尹建华, 温瑞智, 冀昆. 结构抗倒塌易损性分析中地震动输入不确定性影响研究[J]. 工程力学, 2020, 37(1): 115-125.
[6] 宝鑫, 刘晶波, 王东洋, 王建平, 郭东, 宋可. P波垂直入射下海域岛礁场地动力反应分析[J]. 工程力学, 2019, 36(S1): 1-7.
[7] 刘晶波, 王东洋, 谭辉, 宝鑫. 隧道纵向地震反应最不利时刻的确定及其应用[J]. 工程力学, 2019, 36(S1): 240-247.
[8] 王笃国, 赵成刚. 考虑频率参数协调的频率相关等效线性化方法[J]. 工程力学, 2019, 36(9): 169-179.
[9] 许斌, 李靖. 未知地震激励下结构恢复力及质量非参数化识别[J]. 工程力学, 2019, 36(9): 180-187.
[10] 吕大刚, 刘洋, 于晓辉. 第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J]. 工程力学, 2019, 36(9): 1-11,24.
[11] 刘文光, 张鑫, 郭彦, 张强. 放大型黏滞阻尼墙的力学性能与试验研究[J]. 工程力学, 2019, 36(8): 40-48.
[12] 孟栋梁, 杨孟刚, 费凡. 碰撞对高铁简支桥梁横向地震响应影响的振动台试验研究[J]. 工程力学, 2019, 36(8): 161-170,181.
[13] 补国斌, 周靖, 王菁菁. 速度脉冲地震和结构偏心耦合效应对结构影响系数的修正[J]. 工程力学, 2019, 36(8): 217-225.
[14] 周雨龙, 杜修力, 韩强. 双柱式摇摆桥墩结构体系地震反应和倒塌分析[J]. 工程力学, 2019, 36(7): 136-145.
[15] 王东明, 高永武. 城市建筑群概率地震灾害风险评估研究[J]. 工程力学, 2019, 36(7): 165-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[7] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[8] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[9] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[10] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日