工程力学 ›› 2020, Vol. 37 ›› Issue (3): 120-130.doi: 10.6052/j.issn.1000-4750.2019.04.0185

• 土木工程学科 • 上一篇    下一篇

“依赖应变历史材料”结构动力松弛法静力分析中规避虚假应变历史的非线性弹性增量算法

苏小卒1, 王伟2   

  1. 1. 同济大学土木工程学院, 上海 200092;
    2. 绍兴文理学院土木工程学院, 浙江 312000
  • 收稿日期:2019-04-14 修回日期:2019-10-16 出版日期:2020-03-25 发布日期:2019-10-25
  • 通讯作者: 王伟(1980-),男,浙江人,副教授,博士,硕导,从事结构非线性有限元分析研究(E-mail:wangwei1210@189.cn). E-mail:wangwei1210@189.cn
  • 作者简介:苏小卒(1956-),男,河南人,教授,博士,博导,从事混凝土结构研究(E-mail:xiaozusu@mail.tongji.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51178328)

NONLINEAR-ELASTIC-INCREMENT ALGORITHM FOR ELIMINATING FICTITIOUS STRAIN HISTORY IN STATIC ANALYSIS OF SHDM STRUCTURES USING THE DYNAMIC RELAXATION METHOD

SU Xiao-zu1, WANG Wei2   

  1. 1. College of Civil Engineering, Tongji University, Shanghai 200092, China;
    2. School of Civil Engineering, Shaoxing University, Zhejiang 312000, China
  • Received:2019-04-14 Revised:2019-10-16 Online:2020-03-25 Published:2019-10-25

摘要: 针对SHDM结构(由依赖应变历史材料制成的结构)有限元非线性静力平衡方程组动力松弛法(DRM)迭代求解时的积分点应力更新步骤,提出非线性弹性增量算法,即在一个静力增量步内固定材料的加卸载路径,使之在该增量步内成为非线性弹性材料。该应力更新算法能使包括收敛解在内的迭代序列中不含虚假应变历史。此外,该算法还可避免静力解答精度依赖于静力增量步长的局限性。通过三个SHDM结构的数值试验对该算法进行了验证。该算法可望对SHDM结构非线性有限元静力问题DRM分析技术的发展起促进作用。

关键词: 结构工程, 静力分析, 有限元方法, 动力松弛法, 依赖应变历史材料, 非线性弹性增量算法

Abstract: This study is to formulate a stress-updating method when solving static equilibrium equations of finite element models of structures with strain-history dependent material (SHDM). Using the dynamic relaxation method (DRM), the nonlinear-elastic-increment algorithm was employed so that the loading and unloading paths were fixed within one increment and the material became nonlinear elastic within the increment. The algorithm eliminated the fictitious strain history from the iterative series including the final converged solution. Moreover, this method removed the limitation whereby the accuracy of the solution was dependent upon the increment step size. Three numerical examples were used to verify the proposed algorithm. It is expected that the algorithm promotes the development of DRM for solving static problems of nonlinear finite element analyses of SHDM structures.

Key words: structural engineering, static analysis, finite element method, dynamic relaxation method, strainhistory-depended material, nonlinear-elastic-increment algorithm

中图分类号: 

  • TU313
[1] Zienkiewicz O C, Taylor R L. The finite element method:for solid and structural mechanics[M]. 6th edition. Beijing:Beijing World Publishing Corporation, 2009:22-84.
[2] Dassault Systemes Simulia Corporation. Abaqus 6.14 analysis user's guide:Volume II[M]. Providence:Dassault Systemes Simulia Corporation, 2014:6.1-6.3.
[3] Day A S. An introduction to dynamic relaxation[J]. The Engineer, 1965, 219:218-221.
[4] 苏小卒. 预应力混凝土框架抗震性能研究[M]. 上海:上海科学技术出版社, 1998:58-79. Su Xiaozu. Seismic behavior of prestressed concrete frame[M]. Shanghai:Shanghai Scientific & Technical Publishers, 1998:58-79. (in Chinese)
[5] Chung W J, Cho J W, Belytschko T. On the dynamic effects of explicit FEM in sheet metal forming analysis[J]. Engineering Computations, 1998, 15(6):750-776.
[6] Dassault Systemes Simulia Corporation. Abaqus 6.14 theory guide[M]. Providence:Dassault Systemes Simulia Corporation, 2014:2.2, 2.4.5-1.
[7] 卡德斯图赛H, 诺里D H, 布雷齐F, 等. 有限元法手册[M]. 诸德超, 傅子智, 龚尧南, 等译. 北京:科学出版社, 1996:1290-1294. Kardestuncer H, Norrie D H, Brezzi F, et al. Finite element handbook[M]. Translated by Zhu Dechao, Fu Zizhi, Gong Yaonan, et al. Beijing:Science Press, 1996:1290-1294. (in Chinese)
[8] Borst R D, Crisfield M A, Remmers J J C, et al. Non-linear finite element analysis of solids and structures[M]. Chester:John Wiley & Sons, 2012.
[9] 何政, 欧进萍. 钢筋混凝土结构非线性分析[M]. 哈尔滨:哈尔滨工业大学出版社, 2007:184-188. He Zheng, Ou Jinping. No-linear finite element analysis of reinforced concrete structures[M]. Harbin:Harbin Institute of Technology Press, 2007:184-188. (in Chinese)
[10] 段云岭. 非线性方程组的解法:局部弧长法[J]. 力学学报, 1997, 29(1):116-121. Duan Yunling. Local arc-length method-A solution procedure for non-linear finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(1):116-121. (in Chinese)
[11] May I M, Duan Y. A local arc-length procedure for strain softening[J]. Computers & Structures, 1997, 64(1-4):297-303.
[12] Yang Z, Chen J. Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods[J]. International Journal of Solids & Structures, 2004, 41(3/4):801-826.
[13] Alfano G, Crisfield M A. Solution strategies for the delamination analysis based on a combination of localcontrol arc-length and line searches[J]. International Journal for Numerical Methods in Engineering, 2003, 58(7):999-1048.
[14] Natario P, Silvestre N, Camotim D. Web crippling failure using quasi-static FE models[J]. Thin-Walled Structures, 2014, 84:34-49.
[15] Cundall P A. Explicit finite-difference methods in geomechanics[J]. Numerical Methods in Geomechanics, 1976.
[16] 王伟, 苏小卒. 动力松弛法在应变软化类结构有限元静力分析中的应用[J]. 计算力学学报, 2018, 35(2):230-237. Wang Wei, Su Xiaozu. Application of dynamic relaxation method in finite element static-solution of strainsoftening-type structure[J]. Chinese Journal of Computational Mechanics, 2018, 35(2):230-237. (in Chinese)
[17] Rezaiee-pajand M, Sarafrazi S R, Rezaiee H. Efficiency of dynamic relaxation methods in nonlinear analysis of truss and frame structures[J]. Computers & Structures, 2012, s112/113(s112/113):295-310.
[18] Otter J R H, Cassell A C, Hobbs R E. Dynamic relaxation[J]. ICE Proceedings, 1966, 35(4):633-656.
[19] Rushton K R. Large deflexion of variable-thickness plates[J]. International Journal of Mechanical Sciences, 1968, 10(9):723-735.
[20] Frieze P A, Hobbs R E, Dowling P J. Application of dynamic relaxation to the large deflection elasto-plastic analysis of plates[J]. Computers & Structures, 1978, 8(2):301-310.
[21] Ramesh G, Krishnamoorthy C S. Geometrically noninear analysis of plates and shallow shells by dynamic relaxation[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 123(1):15-32.
[22] 叶继红, 李爱群, 刘先明. 动力松弛法在索网结构形状确定中的应用[J]. 土木工程学报, 2002, 35(6):14-19. Ye Jihong, Li Aiqun, Liu Xianming. Form finding of cable nets by modified dynamic relaxation[J]. China Civil Engineering Journal, 2002, 35(6):14-19. (in Chinese)
[23] 阚远, 叶继红. 动力松弛法在索穹顶结构形状确定中的应用[J]. 工程力学, 2007, 24(9):50-55. Kan Yuan, Ye Jihong. Form finding of cable domes by modified dynamic relaxation[J]. Engineering Mechanics, 2007, 24(9):50-55. (in Chinese)
[24] 张志宏, 李志强, 董石麟. 杂交空间结构形状确定问题的探讨[J]. 工程力学, 2010, 27(11):56-63. Zhang Zhihong, Li Zhihong, Dong Shilin. Discussions on shape determination of hybrid spatial structures[J]. Engineering Mechanics, 2010, 27(11):56-63.
[25] Ali N B H, Rhode-barbarigos L, Smith I F C. Analysis of clustered tensegrity structures using a modified dynamic relaxation algorithm[J]. International Journal of Solids & Structures, 2011, 48(5):637-647.
[26] Yu R C, Saucedo L, Ruiz G. Finite-element study of the diagonal-tension failure in reinforced concrete beams[J]. International Journal of Fracture, 2011, 169(2):169-182.
[27] Garcia J R, Rio G, Cadou J M. Numerical study of dynamic relaxation methods:Contribution to the modeling of inflatable lifejackets[M]. Saarbrücken:LAP LAMBERT Academic Publishing Gmbh & Co. KG, 2012.
[28] Baverel O, Nabaei S S, Weinand Y. Mechanical form-finding of the timber fabric structures with dynamic relaxation method[J]. International Journal of Space Structures, 2013, 28(3/4):197-214.
[29] Oliver J, Huespe A E, Cante J C. An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems[J]. Computer Methods in Applied Mechanics & Engineering, 2008, 197(21):1865-1889.
[30] Zienkiewicz O C, Taylor R L, Zhu J Z. The finite element method:Its basis and fundamentals[M]. 6th ed. Beijing:Beijing World Publishing Corporation, 2008:615-618.
[31] 陈惠发, 萨里A F. 弹性与塑性力学[M]. 余天庆, 王勋文, 刘再华, 译. 北京:中国建筑工业出版社, 2004:179-188, 225-234. Chen W F, Saleeb A F. Elasticity and plasticity[M]. Translated by Yu Tianqing, Wang Xunwen, Liu Zaihua. Beijing:China Architecture and Building Press, 2004:179-188, 225-234. (in Chinese)
[32] Mazars J. A description of micro- and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics, 1986, 25(5/6):729-737.
[33] Mazars J, Pijaudier J. Continuum damage theoryapplication to concrete[J]. Journal of Engineering Mechanics, 1989, 115(2):345-365.
[34] 彭芳乐, 李福林, 白晓宇. 针对砂土应变软化强非线性问题的动态松弛有限元法研究[J]. 岩土力学, 2012, 33(2):590-596. Peng Fangle, Li Fulin, Bai Xiaoyun. A dynamic relaxation-finite element method for strong nonlinearity caused by post-peak strain softening of sands[J]. Rock & Soil Mechanics, 2012, 33(2):590-596. (in Chinese)
[35] 李杰, 任晓丹. 混凝土静力与动力损伤本构模型研究进展述评[J]. 力学进展, 2010, 40(3):284-297. Li Jie, Ren Xiaodan. A review on the constitutive model for static and dynamic damage of concrete[J]. Advances in Mechanics, 2010, 40(3):284-297. (in Chinese)
[36] 维诺格拉多夫I M. 数学百科全书:第3卷[M]. 《数学百科全书》编译委员会, 译. 北京:科学出版社, 1997:6-9. Vinogradov I M. Encyclopaedia of mathematics:Vol.3[M]. Translated by Mathematics encyclopedia compilation committee. Beijing:Science Press, 1997:6-9. (in Chinese)
[1] 李艺, 黄国庆, 程旭, 赵丽娜. 移动型下击暴流及其作用下高层建筑风荷载的数值模拟[J]. 工程力学, 2020, 37(3): 176-187.
[2] 钮鹏, 丁静姝, 金春福, 杨刚, 郭强. 残余应力对碳纤维增强压弯H型钢弹塑性稳定性的影响研究[J]. 工程力学, 2019, 36(S1): 31-36.
[3] 杨浩, 罗帅, 邢国然, 王伟. 杆梁组合结构的有限元分析[J]. 工程力学, 2019, 36(S1): 154-157,169.
[4] 武海鹏, 曹万林, 董宏英. 基于“统一理论”的异形截面多腔钢管混凝土柱轴压承载力计算[J]. 工程力学, 2019, 36(8): 114-121.
[5] 陈隽. 试论结构工程中的大数据:范式、技术与实例分析[J]. 工程力学, 2019, 36(6): 175-182.
[6] 张建春, 张大山, 董毓利, 王卫华. 火灾下钢-混凝土组合梁内力变化的试验研究[J]. 工程力学, 2019, 36(6): 183-192,210.
[7] 梁东, 金浩, 肖军华, 周顺华. 软土地区侧压损失对盾构隧道受力及变形的影响[J]. 工程力学, 2019, 36(5): 148-156,175.
[8] 栗志杰, 由小川, 柳占立, 庄茁, 杨策. 基于三维头部数值模型的颅脑碰撞损伤机理研究[J]. 工程力学, 2019, 36(5): 246-256.
[9] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[10] 冯程远, 李国强, 蒋彬辉. 钢材高温材性模型对火灾下钢框架结构倒塌模拟的影响研究[J]. 工程力学, 2019, 36(12): 24-36,78.
[11] 贾连光, 郎玉霄, 毕然, 宋中琦, 刘勐. 设置横向加劲肋的正六边形孔蜂窝钢梁滞回性能研究[J]. 工程力学, 2019, 36(11): 168-182.
[12] 张衡, 王鑫, 陈辉, 黄斌. 基于同伦分析方法的随机结构静力响应求解[J]. 工程力学, 2019, 36(11): 27-33,61.
[13] 姜志琳, 赵均海, 吕美彤, 张磊. 基于线性强化模型的双层厚壁圆筒极限内压统一解[J]. 工程力学, 2018, 35(S1): 6-12.
[14] 武启剑, 王臣, 支旭东. 玻璃纤维增强短钢管构件轴压试验和破坏模式仿真研究[J]. 工程力学, 2018, 35(8): 184-191.
[15] 王景玄, 王文达, 李华伟. 钢管混凝土平面框架子结构抗连续倒塌精细有限元分析[J]. 工程力学, 2018, 35(6): 105-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日