工程力学 ›› 2020, Vol. 37 ›› Issue (3): 98-107.doi: 10.6052/j.issn.1000-4750.2019.04.0171

• 土木工程学科 • 上一篇    下一篇

三维地震动作用下适用于高耸结构的地震动强度指标

邱意坤, 周长东, 张光伟   

  1. 北京交通大学土木建筑工程学院, 北京 100044
  • 收稿日期:2019-04-10 修回日期:2019-07-21 出版日期:2020-03-25 发布日期:2019-08-09
  • 通讯作者: 周长东(1971-),男,山东人,教授,博士,从事结构鉴定加固与抗震防灾研究(E-mail:zhouchangdong@163.com). E-mail:zhouchangdong@163.com
  • 作者简介:邱意坤(1991-),男,湖北人,博士生,从事结构工程研究(E-mail:ykqiu@outlook.com);张光伟(1995-),男,海南人,硕士生,从事结构工程研究(E-mail:13269336865@163.com).
  • 基金资助:
    国家自然科学基金项目(51678039)

AN EARTHQUAKE INTENSITY MEASURE FOR HIGH-RISE STRUCTURES UNDER THREE-DIMENSIONAL EARTHQUAKE GROUND MOTIONS

QIU Yi-kun, ZHOU Chang-dong, ZHANG Guang-wei   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2019-04-10 Revised:2019-07-21 Online:2020-03-25 Published:2019-08-09

摘要: 烟囱、水塔和广播电视塔等高耸混凝土结构属于高柔的悬臂结构。现有的地震动强度指标多集中于一维或二维地震动作用下的建筑结构,而高耸混凝土结构对竖向地震极其敏感,有必要开展考虑竖向地震动作用的地震动强度指标研究。该文针对混凝土烟囱和水塔结构,提出了一种同时考虑高阶振型和周期延长效应的复合型地震动强度指标,并分别在三维远场地震动和近断层脉冲地震动输入条件下,对该指标的充分性和有效性进行分析和检验。通过和既有的15种地震动强度指标的有效性对比,发现该文提出的指标在三维条件下对这类结构具有较强的适用性。因此,该指标可作为评价高耸混凝土结构抗震性能的一个合理的指标。

关键词: 地震动参数指标, 高耸结构, 高阶振型, 周期延长, 三维地震动

Abstract: High-rise concrete structures are long and flexible cantilever structures which are commonly used as chimneys, water towers and TV towers. The existing earthquake intensity measures (IMs) mainly focus on building structures under one-dimensional or two-dimensional input ground motions, but high-rise concrete structures are sensitive to vertical ground motions. Based on a chimney and a water tower, it proposes a combined earthquake intensity measure which considers both the higher-mode effect and period elongation effect. The sufficiency and efficiency of the IM are investigated for three-dimensional far-field ground motions and near-fault ground motions with the pulse-like effect. A comparison is made among fifteen existing IMs, and the results indicate that the proposed IM is suitable for such kind of structures. Consequently, this IM is a promising intensity measure in the seismic assessment of high-rise structures under three-dimensional ground motions.

Key words: earthquake intensity measure, high-rise structures, higher modes, period elongation, three-dimensional ground motion

中图分类号: 

  • TU973.31
[1] 张锐, 李宏男, 王东升, 等. 结构时程分析中强震记录选取研究综述[J]. 工程力学, 2019, 36(2):1-16. Zhang Rui, Li Hongnan, Wang Dongsheng, et al. Selection and scaling of real accelerograms as input to time-history analysis of structures:a state-of-the art review.[J]. Engineering Mechanics, 2019, 36(2):1-16. (in Chinese)
[2] 陈健云, 周晶, 马恒春, 等. 高耸烟囱结构竖向地震响应的模型试验研究及分析[J]. 建筑结构学报, 2005, 26(2):87-93. Chen Jianyun, Zhou Jing, Ma Hengchun, et al. Study on model test of highrise chimney subjected to vertical seismic action[J]. Journal of Building Structures, 2005, 26(2):1-16. (in Chinese)
[3] 韩建平, 陈继强, 闫青, 等. 考虑谱形影响的地震动强度指标研究进展[J]. 工程力学, 2015, 32(10):9-17. Han Jiangping, Chen Jiqiang, Yan Qing, et al. State of the art of ground motion intensity measures accounting for the influence of spectral shape[J]. Engineering Mechanics, 2015, 32(10):9-17. (in Chinese)
[4] Cordova P P, Deierlein G G, Mehanny S S, et al. Development of a two-parameter seismic intensity measure and probabilistic assessment procedure[C]. Sapporo, Hokkaido:Proceedings of the 2nd U.S.-Japan Workshop on Performance-based Earthquake Engineering Methodology for Reinforced Concrete Building Structures, 2000:187-206.
[5] Vamvatsikos D, Cornell C A. Developing efficient scalar and vector intensity measures for IDA capacity estimation by incorporating elastic spectral shape information[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(13):1573-1600.
[6] Lin L, Naumoski N, Saatcioglu M, et al. Improved intensity measures for probabilistic seismic demand analysis. Part 1:development of improved intensity measures[J]. Canadian Journal of Civil Engineering, 2010, 38(1):79-88.
[7] 周颖, 苏宁粉, 吕西林. 高层建筑结构增量动力分析的地震动强度参数研究[J]. 建筑结构学报, 2013, 34(2):53-60. Zhou Ying, Su Ningfen, Lu Xilin. Study on intensity measure of incremental dynamic analysis for high-rise structures[J]. Journal of Building Structures, 2013, 34(2):53-60. (in Chinese)
[8] 卢啸, 陆新征, 叶列平, 等. 适用于超高层建筑的改进地震动强度指标[J]. 建筑结构学报, 2014, 35(2):15-21. Lu Xiao, Lu Xinzheng, Ye Lieping, et al. Development of an improved ground motion intensity measure for super high-rise buildings[J]. Journal of Building Structures, 2014, 35(2):15-21. (in Chinese)
[9] Shome N. Probabilistic seismic demand analysis of nonlinear structures[D]. Stanford, USA:Stanford University, 1999:320.
[10] Zhang Y T, He Z, Lu W G, et al. A spectralacceleration based linear combination-type earthquake intensity measure for high-rise buildings[J]. Journal of Earthquake Engineering, 2018, 22(8):1479-1508.
[11] 谈臻. 高耸烟囱结构在竖向和水平地震作用下的抗震性能分析[D]. 上海:同济大学, 2007. Tan Zhen, Study on seismic behavior of stack-like structure under vertical and horizonal earthquake action[D]. Shanghai:Tongji University, 2007. (in Chinese)
[12] Zhou C, Tian M, Guo K. Seismic partitioned fragility analysis for high-rise RC chimney considering multidimensional ground motion[J]. Structural Design of Tall and Special Buildings, 2019, 28:e1568.
[13] Zhou Y, Ge P, Li M, et al. An area-based intensity measure for incremental dynamic analysis under two-dimensional ground motion input[J]. The Structural Design of Tall and Special Buildings, 2017, 26(12):e1374.
[14] 曾绪朗. 高耸钢筋混凝土烟囱结构抗震性能研究[D]. 北京:北京交通大学, 2014. Zeng Xulang, Study on seismic performance of high-rise reinforcd concrete chimney structure[D]. Beijing:Beijing Jiaotong University, 2014. (in Chinese)
[15] 张晓阳. 倒锥壳式水塔抗震性能及地震易损性分析[D]. 北京:北京交通大学, 2016. Zhang Xiaoyang, Seismic behavior and fragility analysis of inverted cone water tower[D]. Beijing:Beijing Jiaotong University, 2016. (in Chinese)
[16] Tothong P, Luco N. Probabilistic seismic demand analysis using advanced ground motion intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(13):1837-1860.
[17] Gunes N, Ulucan Z C. Nonlinear dynamic response of a tall building to near-fault pulse-like ground motions[J]. Bulletin of Earthquake Engineering, 2019, 17:2989-3013.
[18] Federal Emergency Management Agency, Quantification of building seismic performance factors:FEMA P695[R]. Washington DC:Federal Emergency ManagementAgency, 2009:A14-A21.
[19] Lu X, Lu X Z, Guan H, et al. Comparison and selection of ground motion intensity measures for seismic design of super high-rise buildings[J]. Advances in Structural Engineering, 2013, 16(7):1249-1262.
[20] 杨参天, 解琳琳, 李爱群, 等. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8):21-29. Yang Cantian, Xie Linlin, Li Aiqun, et al. Intensity measures for seismically isolated tall buildings[J]. Engineering Mechanics, 2018, 35(8):21-29. (in Chinese)
[1] 梁洪超, 楼文娟, 丁浩, 卞荣. 非线性振型结构HFFB试验模态力计算方法及不确定性分析[J]. 工程力学, 2019, 36(3): 71-78.
[2] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2): 87-95.
[3] 赵志, 戴靠山, 毛振西, 张采薇. 不同频谱特性地震动下风电塔破坏分析[J]. 工程力学, 2018, 35(S1): 293-299.
[4] 张锐, 成虎, 吴浩, 王东升. 时程分析考虑高阶振型影响的多频段地震波选择方法研究[J]. 工程力学, 2018, 35(6): 162-172.
[5] 文颖, 陶蕤. 基于加速度泰勒展开的动力学方程显式积分方法[J]. 工程力学, 2018, 35(11): 26-34.
[6] 陈鑫, 李爱群, 徐庆阳, 张志强. 基于遗传算法的高耸结构环形TLD满意优化设计[J]. 工程力学, 2016, 33(6): 77-84.
[7] 崔定宇, 辛克贵, 祁泉泉. 扩展特征系统实现算法的模态参数识别特性研究[J]. 工程力学, 2013, 30(8): 49-53.
[8] 沈飞, 楼梦麟. 超高层建筑地震反应中高阶振型影响分析[J]. 工程力学, 2012, 29(增刊I): 23-28.
[9] 刘铁林 姜迎春 陈文博. 结构地震响应分析的波动方法[J]. 工程力学, 2012, 29(增刊Ⅱ): 43-56.
[10] 刘铁林;姜迎春;刘洪飞. 地震作用下高耸结构动力响应波动分析方法[J]. 工程力学, 2008, 25(增刊Ⅱ): 164-167.
[11] 张玉梅;宋玉普;张晓东. 多向地震耦合作用下高耸结构土-结构动力相互研究[J]. 工程力学, 2008, 25(2): 0-087.
[12] 张玉梅;宋玉普;张晓东. 多向地震耦合作用下高耸结构土-结构动力相互研究[J]. 工程力学, 2008, 25(2): 0-159.
[13] 潘汉明;周福霖;梁 硕. 广州新电视塔整体结构振动台试验研究[J]. 工程力学, 2008, 25(11): 78-085.
[14] 程华;王仲刚;黄宗明;邓洪洲;张力. 基于非Gauss风载的高耸结构风振可靠性分析[J]. 工程力学, 2006, 23(7): 81-86.
[15] 马人乐;何敏娟. 《高耸结构设计规范》修编概要及思想[J]. 工程力学, 2005, 22(S1): 90-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日