工程力学 ›› 2020, Vol. 37 ›› Issue (3): 88-97.doi: 10.6052/j.issn.1000-4750.2019.04.0167

• 土木工程学科 • 上一篇    下一篇

混凝土结构中考虑滑移效应的钢筋本构模型研究

李磊, 王卓涵, 张艺欣, 郑山锁   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2019-04-10 修回日期:2019-06-18 出版日期:2020-03-25 发布日期:2019-06-26
  • 通讯作者: 王卓涵(1994-),男,广东人,博士生,主要从事结构抗震研究(E-mail:wangzhuohan1994@163.com). E-mail:wangzhuohan1994@163.com
  • 作者简介:李磊(1983-),男,湖北人,副教授,博士,主要从事混凝土基本理论与工程抗震研究(E-mail:lilei1004@163.com);张艺欣(1991-),女,河南人,博士生,主要从事结构抗震研究(E-mail:zyx19910619@126.com);郑山锁(1960-),男,陕西人,教授,博士,主要从事结构工程与工程抗震研究(E-mail:zhengshansuo@263.net).
  • 基金资助:
    国家科技支撑计划项目(2013BAJ08B03);陕西省自然科学基础研究计划项目(2016KJXX-93)

RESEARCH ON THE CONSTITUTIVE MODEL OF STEEL BAR CONSIDERING SLIPPAGE EFFECT IN CONCRETE STRUCTURE

LI Lei, WANG Zhuo-han, ZHANG Yi-xin, ZHENG Shan-suo   

  1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • Received:2019-04-10 Revised:2019-06-18 Online:2020-03-25 Published:2019-06-26

摘要: 以钢筋混凝土(reinforced concrete,RC)结构中的钢筋滑移效应为研究对象,通过黏结应力分布简化模型,得到了钢筋应力-滑移关系,基于已有拉拔试验数据验证了该钢筋滑移关系的可靠性。结合塑性铰长度模型建立了可考虑滑移效应的钢筋应力-应变理论关系,分析了混凝土强度、钢筋直径和塑性铰长度等参数对该关系的影响,提出了考虑滑移效应的双线性钢筋本构模型。基于OpenSEES有限元平台,将该模型用于纤维截面的宏观单元模型中模拟RC柱的侧向荷载-位移反应,通过与已有试验结果、不考虑钢筋滑移效应的纤维模型计算结果及考虑钢筋滑移效应的零长度纤维模型计算结果进行对比分析,验证了本文模型的精度和可靠性,并对其适用范围进行了讨论。结果表明,基于本文钢筋本构的纤维模型可以更为准确地计算RC柱的荷载-位移曲线,且能够考虑由钢筋滑移变形引起的柱顶附加水平位移。

关键词: 钢筋混凝土, 钢筋本构, 纤维截面, 钢筋滑移, 零长度, OpenSEES

Abstract: To study the rebar slippage effects in reinforced concrete (RC) structures, the steel stress-slip relationship is derived by simplifying the distribution of the bond stress. Based on the existing pull-out test results, the derived steel stress-slip relationship is verified. The model of the plastic hinge length is introduced, and the slippage effects considering steel stress-strain theoretical relationship is established. The influence of the concrete strength, diameter of steel bar, and plastic hinge length on this relationship is analyzed and a simplified constitutive model of steel bar considering slippage effect is proposed. Based on the finite element platform OpenSEES, the fiber beam-column model implemented by the proposed model proved to be accurate and reliable by comparison with the existing experimental results, the fiber model without considering rebar slippage deformation, and the zero-length fiber model. The application scope of the proposed model is further discussed. The results show that the lateral load-displacement response of the RC column can be exactly calculated by the fiber model based on the proposed model; while the column additional lateral displacement caused by rebar slippage deformation can be well predicted.

Key words: reinforced concrete, constitutive model of steel bar, fiber section, rebar slippage, zero-length, OpenSEES

中图分类号: 

  • TU375
[1] Saatcioglu M, Ozcebe G. Response of reinforced concrete columns to simulated seismic loading[J]. ACI Structural Journal, 1989, 86(6):3-12.
[2] Sezen H, Moehle J P. Seismic tests of concrete columns with light transverse reinforcement[J]. ACI Structural Journal, 2006, 103(6):842-849.
[3] Lynn A C, Moehle J P, Mabin S A, et al. Seismic evaluation of existing reinforced concrete building columns[J]. Earthquake Spectra, 1996, 12(4):715-739.
[4] Kawashima K, Watanabe G, Hayakawa R. Seismic performance of RC bridge columns subjected to bilateral excitation[C]//Proceedings of 35th Joint Meeting, Panel on Wind and Seismic Effects, Tsukuba Science City, Japan:Tokyo Institute of Technology, 2003.
[5] Lehman D E, Moehle J P. Seismic performance of well-confined concrete bridge columns:No. PEER-1998/01[R]. Berkeley:University of California-Berkeley, 2000.
[6] Brage F, Gigliotti R, Laterza M. R/C existing structures with smooth reinforcing bars:Experimental behavior of beam-column joints subject to cyclic lateral loads[J].Open Construction and Building Technology Journal, 2009, 3(16):52-67.
[7] 吴涛, 魏慧, 刘喜, 等. 箍筋约束高强轻骨料混凝土柱轴压性能试验研究[J]. 工程力学, 2018, 35(2):203-213. Wu Tao, Wei Hui, Liu Xi, et al. Experimental study on axial compression behavior of confined high-strength lightweight aggregate concrete under concentric loading[J]. Engineering Mechanics, 2018, 35(2):203-213. (in Chinese)
[8] 梁兴文, 杨鹏辉, 何伟, 等. 钢筋混凝土框架-纤维增强混凝土耗能墙结构抗震性能试验研究[J]. 工程力学, 2018, 35(1):209-218. Liang Xingwen, Yang Penghui, He Wei, et al. Experimental study on aseismic behavior of reinforced concrete frame-energy dissipation walls made with high performance fiber reinforced concrete[J]. Engineering Mechanics, 2018, 35(1):209-218. (in Chinese)
[9] Terzic V, Schoettler M J, Restrepo J I, et al. Concrete column blind prediction contest 2010:Outcomes and observations:No. PEER-2015/01[R]. California:Pacific Earthquake Engineering Research Center, 2015.
[10] Schoettler M J, Restrepo J I, Guerrini G, et al. A full-scale, single-column bridge bent tested by shake-table excitation:No. PEER-2015/02[R]. California:Pacific Earthquake Engineering Research Center, 2015.
[11] Wu Y F, Zhao X M. Unified bond stress-slip model for reinforced concrete[J]. Journal of Structural Engineering, 2013, 139(11):1951-1962.
[12] Tao M X, Nie J G. Fiber beam-column model considering slab spatial composite effect for nonlinear analysis of composite frame systems[J]. Journal of Structural Engineering, 2014, 140(1):04013039.
[13] 陶慕轩, 丁然, 潘文豪, 等. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3):1-21. Tao Muxuan, Ding Ran, Pan Wenhao, et al. Some advances in conventional fiber beam-column model[J]. Engineering Mechanics, 2018, 35(3):1-21. (in Chinese)
[14] Tao M X, Nie J G. Element mesh, section discretization and material hysteretic laws for fiber beam-column elements of composite structural members[J]. Materials and Structures, 2015, 48(8):2521-2544.
[15] Monti G, Spacone E. Reinforced concrete fiber beam element with bond-slip[J]. Journal of Structural Engineering, 2000, 126(6):654-661.
[16] Pan W H, Tao M X, Nie J G. Fiber beam-column element model considering reinforcement anchorage slip in the footing[J]. Bulletin of Earthquake Engineering, 2017, 15(3):991-1018.
[17] Zhao J, Sritharan S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI Structural Journal, 2007, 104(2):133-141.
[18] 成虎, 李宏男, 王东升, 等. 考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J]. 工程力学, 2017, 34(12):48-58. Cheng Hu, Li Hongnan, Wang Dongsheng, et al. Seismic performance analysis of reinforced concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J]. Engineering Mechanics, 2017, 34(12):48-58. (in Chinese)
[19] 朱绩超, 王响, 张勤. 考虑粘结-滑移与剪切作用的钢筋混凝土柱侧向变形分析[J]. 工程力学, 2015, 32(7):128-135. Zhu Jichao, Wang Xiang, Zhang Qin. Lateral deformations analysis of reinforced concrete columns incorporating bond-slip and shear effects[J]. Engineering Mechanics, 2015, 32(7):128-135. (in Chinese)
[20] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):280-289.
[21] Shima H, Chou L L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, 1987, 39(2):133-194.
[22] Viwathanatep S, Popov E, Bertero V V. Effects of generalized loadings on bond of reinforcing bars embedded in confined concrete blocks:No. UCB/EERC-79/22[R]. California:Pacific Earthquake Engineering Research Center, 1979.
[23] Mathey R G, Watstein D. Investigation of bond in beam and pull-out specimens with high-yield-strength deformed bars[J]. ACI Journal Proceedings, 1961, 32(9):1071-1090.
[24] Engstrom B, Mangnusson J, Huang Z. Pull-out behavior of ribbed bars in normal and high-strength concrete with various confinements[J]. Special Publication, 1998, 180:215-242.
[25] Ueda T, Lin I, Hawkins N M. Beam bar anchorage in exterior column-beam connections[J]. ACI Journal Proceedings, 1986, 83(3):412-422.
[26] Bae S, Bavrak O. Plastic hinge length of reinforced concrete columns[J]. ACI Structural Journal, 2008, 105(3):290-300.
[27] Mckenna F, Fenves G L, Scott M H, et al. Open system for earthquake engineering simulation (OpenSEES)[R]. Berkeley, CA:Pacific Earthquake Engineering Research Center, 2000.
[28] Yassin M H M. Nonlinear analysis of prestressed concrete structures under monotonic and cyclic loads[M]. Berkeley:University of California-Berkeley, 1994.
[29] Roy H E H, Sozen M A. Ductility of concrete[J]. Special Publication, 1965, 12:213-235.
[30] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
[31] 过镇海. 钢筋混凝土原理[M]. 北京:清华大学出版社, 2013. Guo Zhenhai. Principles of reinforced concrete[M]. Beijing:Tsinghua University Press, 2013. (in Chinese)
[1] 王斌, 史庆轩, 蔡文哲, 彭一功, 李涵. RC带翼缘剪力墙变形能力计算方法研究[J]. 工程力学, 2020, 37(3): 167-175,216.
[2] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[3] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[4] 王丽萍, 罗文文, 刘思危, 张伟, 蒋利成, 杨仕建. 考虑梁轴向约束效应的RC梁柱节点受力机理及抗震性能试验研究[J]. 工程力学, 2020, 37(2): 159-167,191.
[5] 金浏, 王涛, 杜修力, 夏海. 钢筋混凝土悬臂梁剪切破坏及尺寸效应律研究[J]. 工程力学, 2020, 37(1): 53-62.
[6] 邢国华, 杨成雨, 常召群, 秦拥军, 张广泰. 锈蚀钢筋混凝土柱的修正压-剪-弯分析模型研究[J]. 工程力学, 2019, 36(8): 87-95.
[7] 马颖, 王东升, 解河海, 白卫峰. 基于Bayesian理论的弯剪破坏钢筋混凝土柱变形能力概率模型[J]. 工程力学, 2019, 36(7): 216-226.
[8] 古泉, 张宁, 郑越. 高延性纤维增强水泥基复合材料(ECC)连续梁模型在地震荷载下的响应及其敏感性分析[J]. 工程力学, 2019, 36(6): 157-163,182.
[9] 魏慧, 吴涛, 刘洋, 刘喜. 考虑尺寸效应的深受弯构件受剪模型分析[J]. 工程力学, 2019, 36(5): 130-136.
[10] 肖宇哲, 李易, 陆新征, 任沛琪, 何浩祥. 混凝土梁柱子结构连续倒塌动力效应的试验研究[J]. 工程力学, 2019, 36(5): 44-52.
[11] 张艺欣, 郑山锁, 裴培, 李磊, 秦卿, 董立国. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2): 78-86.
[12] 闫培雷, 孙柏涛. 基于环境激励法的高层钢筋混凝土剪力墙结构自振周期经验公式研究[J]. 工程力学, 2019, 36(2): 87-95.
[13] 熊能, 顾冬生. 钢筋粘结滑移弯矩-转角计算模型[J]. 工程力学, 2019, 36(12): 98-105.
[14] 刘圣宾, 凌干展, 余波. 考虑力学机制和不确定性影响的钢筋混凝土柱概率抗剪承载力模型[J]. 工程力学, 2019, 36(11): 183-194.
[15] 仇建磊, 贡金鑫. 压弯剪作用下钢筋混凝土柱荷载-变形分析[J]. 工程力学, 2019, 36(10): 189-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日