工程力学 ›› 2020, Vol. 37 ›› Issue (3): 77-87.doi: 10.6052/j.issn.1000-4750.2019.04.0165

• 土木工程学科 • 上一篇    下一篇

基于显式算法的RC框架结构抗地震倒塌能力分析

赵鹏举1, 于晓辉1, 陆新征2   

  1. 1. 哈尔滨工业大学结构工程灾变与控制教育部重点实验室, 黑龙江, 哈尔滨 150090;
    2. 清华大学土木工程安全与耐久教育部重点实验室, 北京 100084
  • 收稿日期:2019-04-03 修回日期:2019-06-25 出版日期:2020-03-25 发布日期:2019-07-19
  • 通讯作者: 陆新征(1978-),男,安徽人,教授,博士,主要从事结构非线性仿真研究(E-mail:luxz@tsinghua.edu.cn). E-mail:luxz@tsinghua.edu.cn
  • 作者简介:赵鹏举(1997-),男,河南开封人,本科生,主要从事结构抗地震倒塌研究(E-mail:zhaopengju0116@163.com);于晓辉(1982-),男,辽宁丹东人,副研究员,博士,硕导,主要从事地震易损性和概率风险分析研究(E-mail:yxhhit@126.com).
  • 基金资助:
    国家自然科学基金项目(51778341,51778198)

COLLAPSE CAPACITY ASSESSMENT OF RC FRAME STRUCTURES USING EXPLICIT ALGORITHM

ZHAO Peng-ju1, YU Xiao-hui1, LU Xin-zheng2   

  1. 1. Key Lab of Structure Dynamic Behavior and Control of China Ministry of Education, Harbin Institute of Technology, Harbin, Hei longjiang 150090, China;
    2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Tsinghua University, Beijing 100084, China
  • Received:2019-04-03 Revised:2019-06-25 Online:2020-03-25 Published:2019-07-19

摘要: 相比于传统动力学分析所采用的隐式算法,显式算法非线性分析的收敛性更好,适宜用来分析结构在倒塌状态附近的强非线性行为。该文基于OpenSees软件平台,采用一种基于修正蛙跳法的显式算法,对按我国规范设计的6个钢筋混凝土(RC)框架结构的抗倒塌能力进行了评估,获得了结构的倒塌易损性曲线,计算得到了结构的倒塌裕度比。在分析过程中,该文对4种不同判据对抗地震倒塌能力的影响进行了分析。其中,第1和第2种判据分别对应我国和美国规范建议的弹塑性层间位移角限值1/50和4%;第3种判据以IDA(Incremental DynamicAnalysis,增量动力分析)曲线上切线斜率低于初始线弹性阶段斜率的20%时的点为结构倒塌点;第4种判据则以结构竖向位移达到1 m来定义结构倒塌状态。分析结果表明:显式算法具有更强的结构非线性分析能力,因此可以更好地模拟结构的倒塌极限状态。判据1~判据3更适宜在结构设计时被用来控制结构倒塌,而判据4利用了结构倒塌的物理意义,其评估结果更接近结构的真实抗倒塌能力。

关键词: 显式算法, 地震倒塌, 倒塌判据, RC框架结构, 修正蛙跳法

Abstract: Explicit algorithms have better performance with regarding convergence than implicit algorithms widely used in the conventional dynamic analysis. Explicit algorithms are more suitable for simulating the strong nonlinear behaviors of the structures close to a collapse state. It adopts an explicit algorithm based on a modified leapfrog format to evaluate the seismic collapse resistance of the reinforced concrete (RC) frames designed according to the current Chinese codes. OpenSees is used as the software platform. The seismic collapse fragility curves and the collapse margin ratios are obtained for the RC frames. Four criteria to describe collapse limit states are used and their effects on the collapse resistance of structures are investigated. The first two collapse criteria are corresponding to the inelastic inter-story drift ratio of 1/50 and 4% recommended by Chinese and US codes. The third collapse criterion is defined from the IDA (Incremental Dynamic Analysis) curve with the tangent slope equal to 20% of the initial elastic slope. The fourth collapse criterion is determined by the vertical displacement equaling to 1 m. The results show that explicit algorithms have better nonlinear simulation performance than implicit algorithms and can well approach to the collapse limit state. The first three criteria for the definition of collapse states are suitable for aseismic design to avoid the occurrence of structural collapse due to earthquake excitations. The fourth collapse criterion is derived based on the physical meaning of structural collapse, whose evaluation result is closer to actual structural collapse resistance.

Key words: explicit algorithm, seismic collapse, collapse criteria, RC frame, modified leapfrog format

中图分类号: 

  • TU311.3
[1] 叶列平, 陆新征, 赵世春, 等. 框架结构抗地震倒塌能力的研究:汶川地震极震区几个框架结构震害案例分析[J]. 建筑结构学报, 2009, 30(6):67-76. Ye Lieping, Lu Xinzheng, Zhao Shichun, et al. Seismic collapse resistance of RC frame structures-case studies on seismic damages of several RC frame structures under extreme ground motion in Wenchuan Earthquake[J]. Journal of Building Structures, 2009, 30(6):67-76. (in Chinese)
[2] 清华大学土木工程结构专家组, 西南交通大学土木工程结构专家组, 北京交通大学土木工程结构专家组, 等. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4):1-9. Civil Engineering and Structural Groups of Tsinghua University, Xinan Jiaotong University and Beijing Jiaotong University, et al. Analysis on seismic damage of buildings in the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4):1-9. (in Chinese)
[3] 叶列平, 曲哲, 陆新征, 等. 提高建筑结构抗地震倒塌能力的设计思想与方法[J]. 建筑结构学报, 2008, 29(4):42-50. Ye Lieping, Qu Zhe, Lu Xinzheng, et al. Collapse prevention of building structures:a lesson from the Wenchuan earthquake[J]. Journal of Building Structures, 2008, 29(4):42-50. (in Chinese)
[4] 范萍萍, 陆新征, 叶列平. 不同抗震等级RC框架结构抗地震倒塌能力的研究[J]. 工程力学, 2018, 35(6):33-41. Fan Pingping, Lu Xinzheng, Ye Lieping. Study on the collapse-resistant capacity of RC frames with different aseismic grades[J]. Engineering Mechanics, 2018, 35(6):33-41. (in Chinese)
[5] Vamvatsikos D, Cornell C A. Incremental dynamic analysis[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(3):491-514.
[6] 吕大刚,于晓辉, 陈志恒. 钢筋混凝土框架结构侧向倒塌地震易损性分析[J]. 哈尔滨工业大学学报, 2011, 43(6):1-5. Lü Dagang, Yu Xiaohui, Chen Zhiheng. Lateral seismic collapse fragility analysis of RC frame structures[J]. Journal of Harbin Institute of Technology, 2011, 43(6):1-5. (in Chinese)
[7] 于晓辉, 吕大刚. 考虑结构不确定性的地震倒塌易损性分析[J]. 建筑结构学报, 2012, 33(10):8-14. Yu Xiaohui, Lü Dagang. Seismic collapse fragility analysis considering structural uncertainties[J]. Journal of Building Structures, 2012, 33(10):8-14. (in Chinese)
[8] 杜轲, 孙景江, 丁宝荣, 等. 显式分析方法在高层建筑弹塑性地震反应分析中的适用性研究[J]. 地震工程与工程振动, 2015, 35(4):85-93. Du Ke, Sun Jingjiang, Ding Baorong, et al. The applicability of explicit analysis method for elastic-plastic seismic response analysis of high-rise building[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(4):85-93. (in Chinese)
[9] 王进廷, 杜修力. 有阻尼体系动力分析的一种显式差分法[J]. 工程力学, 2002, 19(3):109-111. Wang Jinting, Du Xiuli. An explicit difference method for dynamic analysis of a structure system with damping[J]. Engineering Mechanics, 2002, 19(3):109-111. (in Chinese)
[10] 朱跃峰. 基于ABAQUS的显式动力学分析方法研究[J]. 机械设计与制造, 2015(3):107-109, 113. Zhu Yuefeng. Research on analysis methods of explicit dynamics based on ABAQUS[J]. Machinery Design and Manufacture, 2015(3):107-109, 113. (in Chinese)
[11] 陈国兴, 陈磊, 景立平, 等. 地铁地下结构抗震分析并行计算显式与隐式算法比较[J]. 铁道学报, 2011, 33(11):111-117. Chen Guoxing, Chen Lei, Jing Liping, et al. Comparison of implicit and explicit finite element methods with parallel computing for seismic response analysis of metro underground structures[J]. Journal of China Railway Society, 2011, 33(11):111-117. (in Chinese)
[12] 梁艳晨, 田志昌, 李娟. 碎石垫层地基对提高建筑物抗震能力的ANSYS/LS-DYNA显式积分程序模拟分析[J]. 内蒙古科技大学学报, 2009, 28(4):354-357. Liang Yanchen, Tian Zhichang, Li Juan. ANSYS/LS-DYNA explicit integration procedures simulation of the foundation gravel layer to improve the seismic capacity of buildings[J]. Journal of Inner Mongolia University of Science and Technology, 2009, 28(4):354-357. (in Chinese)
[13] 张书豪. 显式积分算法及三角形壳单元在OpenSees中的集成与应用[D]. 北京:清华大学, 2017. Zhang Shuhao. Integration and application of explicit integration method and triangular shell element with OpenSees[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[14] GB 50011-2010, 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2016. GB 50011-2010, Code for seismic design of buildings[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[15] FEMA 356, Prestandard and commentary for the seismic rehabilitation of buildings[R]. Washington, D. C.:Federal Emergency Management Agency, 2000.
[16] Villaverde R. Methods to assess the seismic collapse capacity of building structures:State of the art[J]. Journal of Structural Engineering, 2007, 133(1):57-66.
[17] Sauer T, 裴玉茹, 马赓宇. 数值分析[M]. 北京:机械工业出版社, 2018:250-293. Sauer T, Pei Yüru, Ma Gengyü. Numerical analysis[M], Beijing:China Machine Press, 2018:250-293. (in Chinese)
[18] 张雄, 王天舒. 计算动力学[M]. 北京:清华大学出版社, 2007:140-149. Zhang Xiong, Wang Tianshu. Computational dynamics[M]. Beijing:Tsinghua University Press, 2007:140-149. (in Chinese)
[19] Hockney R W. The potential calculation and some applications[J]. Methods in Computational Physics, 1970, 9:135-211.
[20] 张志军, 严康宇, 刘歆子建, 等. 一种基于蛙跳算法的高效分子动力学控温方法的统一方案[J]. 科学通报, 2018, 63(33):3467-3483. Zhang Zhijun, Yan Kangyu, Liu Xinzijian, et al. A leap-frog algorithm-based efficient unified thermostat scheme for molecular dynamics[J]. Chinese Science Bulletin, 2018, 63(33):3467-3483. (in Chinese)
[21] 李春艳, 刘华, 刘波涛. 分子动力学模拟基本原理及研究进展[J]. 广州化工, 2011, 39(4):11-13. Li Chunyan, Liu Hua, Liu Botao. Development and methods of molecular dynamics simulation[J]. Guangzhou Chemical Industry, 2011, 39(4):11-13. (in Chinese)
[22] 马文. 冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究[D]. 长沙:国防科学技术大学, 2011. Ma Wen. Molecular dynamics investigations on the mechanisms of plastic deformation and phase transformation of nanocrystalline metals under shock compression[D]. Changsha:National University of Defense Technology, 2011. (in Chinese)
[23] Hallquist J O. LS-DYNA theory manual[M]. Livermore, California:Livermore Software Technology Corporation, 2006:22.2-22.3.
[24] 李志山, 曹胜涛, 刘春明, 等. Rayleigh阻尼和振型阻尼在大规模建筑结构显式动力分析的实现及应用[J]. 土木建筑工程信息技术, 2015, 7(6):91-95. Li Zhishan, Cao Shengtao, Liu Chunming, et al. The realization and application of Rayleigh damping and mode damping in explicit dynamic analysis of large-scale building structures[J]. Journal of Information Technology in Civil Engineering and Architecture, 2015, 7(6):91-95. (in Chinese)
[25] 于晓辉. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨:哈尔滨工业大学, 2012. Yu Xiaohui. Probabilistic seimic fragility and risk analysis of reinforced concrete frame structures[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
[26] 周亮. 基于OpenSEES的RC框架结构非线性分析[D]. 长沙:湖南大学, 2013. Zhou Liang. Nonlinear finite element analysis of RC frame structure based on OpenSEES[D]. Changsha:Hu'nan University, 2013. (in Chinese)
[27] 解琳琳, 黄羽立, 陆新征, 等. 基于OpenSees的RC框架-核心筒超高层建筑抗震弹塑性分析[J]. 工程力学, 2014, 31(1):64-71. Xie Linlin, Huang Yuli, Lu Xinzheng, et al. Elasto-plastic analysis for super tall RC frame-core tube structures based on OpenSees[J]. Engineering Mechanics, 2014, 31(1):64-71. (in Chinese)
[28] GB 50010-2010, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2016. GB 50011-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2016. (in Chinese)
[29] Saatcioglu M, Razvi S R. Strength and ductility of confined concrete[J]. Journal of Structural Engineering, 1992, 118(6):1590-1607.
[30] 陆新征, 蒋庆, 缪志伟, 等. 建筑抗震弹塑性分析[M]. 北京:中国建筑工业出版社, 2015:333-334. Lu Xinzheng, Jiang Qing, Miao Zhiwei, et al. Elasto-plastic analysis of buildings against earthquake[M]. Beijing:China Architecture & Building Press, 2015:333-334. (in Chinese)
[31] 施炜, 叶列平, 陆新征, 等. 不同抗震设防RC框架结构抗倒塌能力的研究[J]. 工程力学, 2011, 28(3):41-48. Shi Wei, Ye Lieping, Lu Xinzheng, et al. Study on the collapse-resistant capacity of RC frames with different seismic fortification levels[J]. Engineering Mechanics, 2011, 28(3):41-48. (in Chinese)
[32] ATC-63, Quantification of building seismic performance factors[S]. Washington, D. C.:Applied Technology Council, 2009.
[33] 王亚勇, 高孟潭, 叶列平, 等. 基于大震和特大震下倒塌率目标的建筑抗震设计方法研究方案[J]. 土木建筑与环境工程, 2010, 32(增刊2):291-297. Wang Yayong, Gao Mengtan, Ye Lieping, et al. Research strategy of building seismic design method based on collapse probability under great earthquakes[J]. Journal of Civil, Architectural & Environmental Engineering, 2010, 32(Suppl 2):291-297. (in Chinese)
[1] 卢嘉茗, 解琳琳, 李爱群, 曾德民, 杨参天, 刘谦敏. 适用于区域RC框架结构隔震韧性提升的简化模型[J]. 工程力学, 2019, 36(8): 226-234,247.
[2] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[3] 吕大刚, 代旷宇, 于晓辉, 李宁. FRP加固非延性RC框架结构的地震易损性分析[J]. 工程力学, 2017, 34(增刊): 49-53,70.
[4] 缪志伟, 宋前恩, 李爱群. 减震设计与抗震设计RC框架结构抗地震倒塌能力对比[J]. 工程力学, 2016, 33(8): 24-31.
[5] 白久林, 欧进萍. 考虑模态侧向力组合的结构抗震性能评估方法[J]. 工程力学, 2016, 33(4): 58-66.
[6] 黄超, 梁兴文, 党争, 邢朋涛. FRC框架结构基于等效单自由度模型的抗地震倒塌能力评估[J]. 工程力学, 2016, 33(2): 127-135.
[7] 岳健广, 钱江. RC框架结构多层次地震损伤演化分析方法[J]. 工程力学, 2015, 32(9): 126-134.
[8] 于婧, 刘小军, 邓明科. 带施工缝RC框架结构抗震性能的数值研究[J]. 工程力学, 2015, 32(8): 190-200.
[9] 王少杰,刘福胜,徐赵东. RC空间框架结构竖向倒塌全过程试验研究与理论分析[J]. 工程力学, 2015, 32(5): 162-167,177.
[10] 缪志伟,宋前恩,裘赵云. 强震作用下附设粘滞阻尼器RC框架结构的 耗能机制与抗倒塌性能研究[J]. 工程力学, 2014, 31(7): 36-44,53.
[11] 叶列平, 缪志伟, 程光煜, 马千里, 陆新征. 建筑结构基于能量抗震设计方法研究[J]. 工程力学, 2014, 31(6): 1-12,20.
[12] 黄盛楠,马千里,叶列平. 罕遇地震下RC框架结构最大弹塑性层间位移的实用计算方法[J]. 工程力学, 2014, 31(4): 69-75,101.
[13] 史栋勇, 胡平, 盈亮, 申国哲, 刘文权. 基于动力显式算法的热成形数值模拟预测[J]. 工程力学, 2014, 31(12): 186-192.
[14] 李 爽 赵 颖 翟长海 谢礼立. 节点对RC框架结构抗连续倒塌能力影响研究[J]. 工程力学, 2012, 29(12): 80-87.
[15] 禚一;李忠献;. 基于显式算法的纤维梁柱单元模型[J]. 工程力学, 2011, 28(12): 39-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 丁幼亮;李爱群;缪长青. 基于小波包能量谱的结构损伤预警方法研究[J]. 工程力学, 2006, 23(8): 42 -48 .
[2] 隋允康;李善坡. 改进的响应面方法在二维连续体形状优化中的应用[J]. 工程力学, 2006, 23(10): 1 -6 .
[3] 聂利英;李建中;胡世德;范立础. 地震作用下板式橡胶支座滑动引起的城市立交中的动力耦合作用[J]. 工程力学, 2006, 23(11): 14 -20 .
[4] 陈波;武岳;沈世钊. 大跨度屋盖结构等效静力风荷载背景分量的确定方法探讨[J]. 工程力学, 2006, 23(11): 21 -27 .
[5] 陈肇元;崔京浩;朱金铨;安明喆;俞哲夫. 钢筋混凝土裂缝机理与控制措施[J]. 工程力学, 2006, 23(S1): 86 -107 .
[6] 郁有升;王 燕;刘秀丽. 钢框架梁翼缘削弱型节点循环荷载作用下的有限元分析及试验研究[J]. 工程力学, 2009, 26(9): 162 -169 .
[7] 李庆华;徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊Ⅱ): 23 -067 .
[8] 蒋建平;章杨松;高广运. 基于现场试验的超长桩端阻力承载性状研究[J]. 工程力学, 2010, 27(2): 149 -160 .
[9] 闫安志;陈亚娟;滕 军. 基于Hertz碰撞模型的TMD参数优化研究[J]. 工程力学, 2010, 27(6): 189 -193, .
[10] 杨德健;王铁成. 双排桩支护结构优化设计与工程应用研究[J]. 工程力学, 2010, 27(增刊Ⅱ): 284 -288 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日