工程力学 ›› 2020, Vol. 37 ›› Issue (3): 66-76.doi: 10.6052/j.issn.1000-4750.2019.04.0163

• 土木工程学科 • 上一篇    下一篇

物理模拟龙卷风的风速和气压降分布特征

田玉基1,2, 钮亚楠1,2, 杨庆山2,3, 李波1,2   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 结构风工程与城市风环境北京市重点实验室, 北京 100044;
    3. 重庆大学土木工程学院, 重庆 400044
  • 收稿日期:2019-04-03 修回日期:2019-10-09 出版日期:2020-03-25 发布日期:2019-10-12
  • 通讯作者: 田玉基(1967-),男,山东人,教授,博士,博导,从事结构风工程研究(E-mail:yujitian@bjtu.edu.cn). E-mail:yujitian@bjtu.edu.cn
  • 作者简介:钮亚楠(1992-),女,北京人,硕士生,从事结构工程设计(E-mail:553187462@qq.com);杨庆山(1968-),男,河北人,教授,博士,从事结构风工程研究(E-mail:qshyang@cqu.edu.cn);李波(1974-),男,湖北人,教授,博士,从事结构风工程研究(E-mail:libo77_@163.com).
  • 基金资助:
    国家自然科学基金项目(51720105005,50878040)

CHARACTERISTICS OF THE SPEEDS AND PRESSURE DROPS OF PHYSICALLY SIMULATED TORNADOES

TIAN Yu-ji1,2, NIU Ya-nan1,2, YANG Qing-shan2,3, LI Bo1,2   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing 100044, China;
    3. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2019-04-03 Revised:2019-10-09 Online:2020-03-25 Published:2019-10-12

摘要: 与季风、台风相比,龙卷风具有空间尺度最小、风速最大的特点,常规气象观测仪器无法记录龙卷风的风场信息;到目前为止,极少量的龙卷风风场信息来自于多普勒雷达探测得到的龙卷风风速、气压特征信息。因此,基于龙卷风实测数据尚不能充分研究龙卷风的风场特征。在实验室中,利用缩尺的物理模拟器生成龙卷风风场,研究其风场特点,对于充分认识龙卷风特性具有重要意义。利用北京交通大学龙卷风模拟器生成了5种涡流比的龙卷风风场,总结分析了龙卷风的切向风速、径向风速、竖向风速以及气压降的空间分布规律,与龙卷风实测结果和龙卷风理论模型进行了对比分析。结果表明,利用北京交通大学龙卷风模拟器生成的龙卷风风场与真实龙卷风的形状相似,风速、气压降的分布特点与真实龙卷风实测值和修正兰金涡理论值吻合或基本吻合,验证了龙卷风模拟器的有效性,为进一步研究建筑、桥梁、输电线等基础设施的龙卷风风效应提供了试验平台。

关键词: 龙卷风, 物理模拟, 涡流比, 三维速度, 气压降

Abstract: Compared with monsoons and typhoons, the tornadoes with the smallest scales and the highest speeds are difficult to measure by meteorological observation instruments. Until now, little wind field information of tornado speeds and pressure drops was obtained by using Doppler radars. The field-measured tornado data are not enough to investigate the wind characteristics. To comprehensively recognize tornados, it is significant to study the wind fields of tornadoes generated by scaled-down physical simulators in the laboratory. Different wind fields of tornadoes with five swirl ratios are produced by the tornado simulator in Beijing Jiaotong University. The spatial distribution characteristics of the tornadoes including the tangential, radial, vertical wind speeds and pressure drops are summarized and analyzed. The simulation results are compared with those recorded in full-scale measurements and determined by theoretical models. The results indicate that the shapes of the simulated tornadoes are similar to those of the actual cases. Furthermore, the distributions of wind speeds and pressure drops generally agree with the actual observed data and theoretical results based on the modified Rankine vortex model. The comparisons prove the validity of the current tornado simulator, which provides a good experimental platform to examine the tornado-induced effects on buildings, bridges, power transmission lines and other infrastructures.

Key words: tornado, physical simulation, swirl ratio, three-dimensional speed, pressure drop

中图分类号: 

  • TU312.1
[1] Chen J Y, Cai X H, Wang H Y, et al. Tornado climatology of China[J]. International Journal of Climatology, 2018, 38(5):2478-2489.
[2] Yang Q S, Gao R, Bai F, et al. Damage to buildings and structures due to recent devastating wind hazards in East Asia[J]. Natural Hazards, 2018, 92(3):1321-1353.
[3] Chang C C. Tornado wind effects on buildings and structures with laboratory simulation[C]//Proceeding of the Third International Conference on Wind Effects on Buildings and Structures, Tokyo, Japan, 1971:231-240.
[4] Ward N B. The exploration of certain features of tornado dynamics using a laboratory model[J]. Journal of the Atmospheric Sciences, 1972, 29(6):1194-1204.
[5] Mitsuta Y, Monji N. Development of a laboratory simulator for small scale atmospheric vortices[J]. Journal of Natural Disaster Science, 1984, 6(1):43-53.
[6] Mishar A R, James D J, Letchford C W. Physical simulation of a single-celled tornado-like vortex, Part A:Flow field characterization[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(8):1243-1257.
[7] Tang Z, Feng C, Wu L, et al. Characteristics of tornado-like vortices simulated in a large-scale ward-type simulator[J]. Boundary-layer Meteorology, 2018, 166(2):327-350.
[8] Haan F L, Sarkar P P, Gallus W A. Design, construction and performance of a large tornado simulator for wind engineering applications[J]. Engineering Structures, 2008, 30(4):1146-1159.
[9] Wang J, Cao S, Pang W, et al. Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices[J]. Boundary-layer Meteorology, 2017, 162(2):319-339.
[10] Cao S Y, Wang J, Cao J, et al. Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145(10):75-86.
[11] Wang J, Cao S, Pang W, et al. Experimental study on tornado-induced wind pressures on a cubic building with openings[J]. Journal of Structural Engineering, 2017, 44(2):04017206.
[12] Church C R, Snow J T, Baker G L, et al. Characteristics of tornado-like vortices as a function of swirl ratio:A laboratory investigation[J]. Journal of the Atmospheric Sciences, 1979, 36(9):1755-1776.
[13] Maryam R. Physical simulation of tornado-like vortices[D]. Canada:The University of Western Ontario, 2014.
[14] Lee W C, Wurman J. Diagnosed three-dimensional axisymmetric of the Mulhall tornado on 3 May 1999[J]. Journal of the Atmospheric Sciences, 2005, 62(7):2373-2393.
[15] Kuai L, Haan J F L, Gallus J W, et al. CFD simulation of the flow field of a laboratory-simulated tornado for parameter sensitivity studies and comparison with field measurement[J]. Wind and Structures, 2008, 11(2):75-96.
[16] USNRC (US Nuclear Regulatory Commission). Design-basis tornado and tornado missiles for nuclear power plants[R]. US Nuclear Regulatory Commission, Washington, DC, Regulatory Guide 1.76, 2007:4-6.
[17] Lee J J, Samaras T, Young C R. Pressure measurements at the ground in an F4 tornado[C]//The 22nd Conference on Severe Local Storms, Hyannis, MA, American Meteorological Society, CD-ROM. 2004, 15.
[1] 俞怡恬, 黄生洪, 王新. 龙卷风冲击高层建筑气动力效应数值模拟[J]. 工程力学, 2020, 37(1): 168-174.
[2] 王新, 黄生洪, 李秋胜. 龙卷风动态冲击高层建筑风荷载数值模拟[J]. 工程力学, 2016, 33(9): 195-203.
[3] 宋拓, 汤卓, 王兆勇, 吕令毅. 基于谱随机有限元法的龙卷风作用下核电常规岛可靠度分析[J]. 工程力学, 2014, 31(11): 146-153.
[4] 张广清;陈勉. 水平井水压致裂裂缝非平面扩展模型研究[J]. 工程力学, 2006, 23(4): 160-165.
[5] 付宝连;李志刚;李尚健. 物理模拟虚功和余虚功原理及它们在金属成形工艺中的应用[J]. 工程力学, 2001, 18(1): 62-70.
[6] 李维民;骆英. 传动轴抗扭刚度的研究分析[J]. 工程力学, 1990, 7(3): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周小平;杨海清;张永兴. 有限宽偏心裂纹板在裂纹面受两对集中拉力作用时裂纹线的弹塑性解析解[J]. 工程力学, 2008, 25(1): 0 -027 .
[2] 张冬娟;崔振山;李玉强;阮雪榆. 平面应变板料拉弯成形回弹理论分析[J]. 工程力学, 2007, 24(7): 0 -071 .
[3] 张伯艳;陈厚群. LDDA动接触力的迭代算法[J]. 工程力学, 2007, 24(6): 0 -006 .
[4] 吴明;彭建兵;徐平;孙苗苗;夏唐代. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89 -095 .
[5] 何浩祥;闫维明;陈彦江. 地震动加加速度反应谱的概念及特性研究[J]. 工程力学, 2011, 28(11): 124 -129 .
[6] 郭佳民;董石麟;袁行飞. 随机缺陷模态法在弦支穹顶稳定性计算中的应用[J]. 工程力学, 2011, 28(11): 178 -183 .
[7] 黄友钦;顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学, 2011, 28(11): 210 -217, .
[8] 李瑞雄;陈务军;付功义;赵俊钊. 透镜式缠绕肋压扁缠绕过程数值模拟及参数研究[J]. 工程力学, 2011, 28(11): 244 -250 .
[9] 李旭东;刘勋;马渊;刘俊岩;吴东流. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学, 2011, 28(11): 218 -224 .
[10] 潘旦光;楼梦麟;董聪. P、SV波作用下层状土层随机波动分析[J]. 工程力学, 2006, 23(2): 66 -71 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日