工程力学 ›› 2020, Vol. 37 ›› Issue (2): 250-256.doi: 10.6052/j.issn.1000-4750.2019.04.0157

• 其他工程学科 • 上一篇    

基于2013年马甸桥北气象塔实测数据的北京城区地貌风速谱分析

王京学1,2, 杨庆山2,3, 孙霖1,2, 李波1,2, 刘敏3   

  1. 1. 北京交通大学土木建筑工程学院, 北京 100044;
    2. 结构风工程与城市风环境北京市重点实验室, 北京 100044;
    3. 重庆大学土木工程学院, 重庆 400044
  • 收稿日期:2019-04-30 修回日期:2019-08-07 出版日期:2020-02-25 发布日期:2019-08-12
  • 通讯作者: 杨庆山(1968-),男,河北人,教授,博士,博导,主要从事结构风工程研究(E-mail:qshyang@cqu.edu.cn). E-mail:qshyang@cqu.edu.cn
  • 作者简介:王京学(1991-),女,河北人,博士生,主要从事结构风工程研究(E-mail:14121095@bjtu.edu.cn);孙霖(1993-),男,河北人,硕士生,主要从事结构风工程研究(E-mail:503100805@qq.com);李波(1978-),男,湖北人,教授,博士,博导,主要从事结构风工程研究(E-mail:libo_77@163.com);刘敏(1987-),男,江西人,博士后,主要从事结构风工程研究(E-mail:11115276@bjtu.edu.cn).
  • 基金资助:
    高等学校学科创新引智计划项目(B13002,B18062);国家自然科学基金项目(51720105005)

ANALYSIS OF THE WIND SPEED SPECTRUM IN THE URBAN AREA OF BEIJING BASED ON THE MEASURED DATA OF THE MA DIAN QIAO BEI METEOROLOGICAL TOWER IN 2013

WANG Jing-xue1,2, YANG Qing-shan2,3, SUN Lin1,2, LI Bo1,2, LIU Min3   

  1. 1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. Beijing's Key Laboratory of Structural Wind Engineering and Urban Wind Environment, Beijing Jiaotong University, Beijing 100044, China;
    3. School of Civil Engineering, Chongqing University, Chongqing 400044, China
  • Received:2019-04-30 Revised:2019-08-07 Online:2020-02-25 Published:2019-08-12

摘要: 基于实测的风场特性研究是结构抗风中的基础性工作之一。脉动风速谱作为风场特性的主要参数之一,描述了风的能量在频率上的分布情况。Van der Hoven最先测得的包括宏观气象尺度峰值和微观气象尺度峰值的风速谱在风工程领域具有奠基性贡献。由于早期采集设备精确性不高、计算分析水平不足,以及近年来城市化进程加快,城市地貌下全频率范围的风速谱有待进一步考查。该文采用2013年北京气象塔47 m、80 m和140 m高度处超声风速仪测得的风速数据,计算分析了反映宏观和微观气象尺度变化的全频率风速谱,并和Van der Hoven风速谱以及其他学者的实测谱进行了对比。结果表明:反映宏观气象尺度变化的低频风速谱除了在周期约为4天处存在峰值外,在周期约为1天(24小时)处的峰值非常明显,而在12小时周期处的峰值相对微弱;与宏观气象尺度峰值相比,高频微观气象尺度峰值较为微弱,且随高度增加,宏观气象尺度峰值逐渐增加,而微观气象尺度峰值相差不多。考虑到结构抗风设计时关注的是强风条件下的高频段风速谱,该文挑选平均风速大于8 m/s的风速样本,对其微观气象尺度风速谱进行了讨论,并和经典风速谱进行了对比,发现不同高度处的实测高频风速谱曲线相互吻合,且实测谱与Kaimal谱接近。

关键词: 风场观测, 脉动风速谱, 宏观气象尺度峰值, 微观气象尺度峰值, Van der Hoven风速谱

Abstract: The study on full-scale wind field characteristics is one of the fundamental works in the structural wind-resistance design. Being one of the main parameters among them, the wind speed spectrum describes the distribution of turbulence energy with the frequency. Van der Hoven first proposed the wind speed spectrum in the wide frequency range, including the macro-meteorological and micro-meteorological peaks, which made a pioneering contribution in wind engineering. Considering that the data acquisition equipment and computing ability in early years were relatively poor and the urbanization is accelerating recently, the full-scale wind speed spectrum should be further examined in urban areas. The paper obtains the wind speed spectrum in a wide frequency range including the macro-meteorological and micro-meteorological peaks based on the wind speed data collected by the sonic anemometers at the heights of 47 m, 80 m and 140 m of the Beijing Meteorological Tower in 2013. The wind speed spectrum is compared with the Van der Hoven spectrum and other previous spectra. The results show that for the macro-meteorological spectrum, besides around the 4-day cycle, the periodic deterministic component with a period of 24 hours is also detectable and prominent. However, the spectrum does not show significant peaks at a period of 12 hours. The micro-meteorological peak is relatively weak compared with the macro-meteorological peak. The macro-meteorological peak increases with the height, while the micro-meteorological peak shows little change for different heights. Considering that the wind spectrum in the high frequency range is the main focus of the structural wind-resistance design, the micro-meteorological spectrum is recalculated based on the strong wind speed samples whose mean wind speeds are larger than 8 m/s. The comparisons with typical power spectrum are performed. It is shown that the micro-meteorological spectrum for different heights generally correspond with each other, and they are shown to be close to the Kaimal spectrum.

Key words: wind field measurement, fluctuating wind spectrum, macro-meteorological peak, micro-meteorological peak, Van der Hoven spectrum

中图分类号: 

  • TU312.1
[1] 黄鹏, 戴银桃, 王旭, 等. 上海沿海地区近地风脉动风速谱及相干性研究[J]. 工程力学, 2014, 31(4):126-133. Huang Peng, Dai Yintao, Wang Xu, et al. Field measurement on power spectra and coherence of near-ground wind in Shanghai coastal area[J]. Engineering Mechanics, 2014, 31(4):126-133. (in Chinese)
[2] 孙富学, 许向楠, 史文海, 等. 温州滨海平坦地貌近地台风特性实测研究[J]. 工程力学, 2018, 35(9):73-80. Sun Fuxue, Xu Xiangnan, Shi Wenhai, et al. Field measurement of Typhoon characteristics near ground in Wenzhou coastal flat terrain[J]. Engineering Mechanics, 2018, 35(9):73-80. (in Chinese)
[3] 王栋成, 董旭光, 邱粲, 等. 山东省境内边界层风廓线雷达观测最大风速随高度变化研究[J]. 建筑结构学报, 2018, 39(2):130-137. Wang Dongcheng, Dong Xuguang, Qiu Can, et al. Study on maximum wind speed change with height of boundary wind profile radar in Shandong[J]. Journal of Building Structures, 2018, 39(2):130-137. (in Chinese)
[4] 李正农, 吴卫祥, 王志峰. 北京郊外近地面风场特性实测研究[J]. 建筑结构学报, 2013, 34(9):82-90. Li Zhengnong, Wu Weixiang, Wang Zhifeng. Field measurements of wind characteristics near ground in Beijing suburbs[J]. Journal of Building Structures, 2013.34(9):82-90. (in Chinese)
[5] 史文海, 李正农, 张传雄. 温州地区近地强风特性实测研究[J]. 建筑结构学报, 2010, 31(10):34-40. Shi Wenhai, Li Zhengnong, Zhang Chuanxiong. Field measurements of strong wind characteristics near ground in Wenzhou district[J]. Journal of Building Structures, 2010, 31(10):34-40. (in Chinese)
[6] 史文海, 李正农, 张传雄. 温州地区不同时距下近地台风特性观测研究[J]. 空气动力学学报, 2011, 29(2):211-216. Shi Wenhai, Li Zhengnong, Zhang Chuanxiong. Fieldmeasurements of different time interval typhoon characteristics near ground in Wenzhou district[J]. Acta Aerodynamica Sinica, 2011, 29(2):211-216. (in Chinese)
[7] 刘志文, 薛亚飞, 季建东, 等. 黄河复杂地形桥位风特性现场实测[J]. 工程力学, 2015, 32(s1):233-239. Liu Zhiwen, Xue Yafei, Ji Jiandong, et al. Field measurement of wind characteristics of a bridge site with complex Yellow River terrain[J]. Engineering Mechanics, 2015, 32(s1):233-239. (in Chinese)
[8] Liu J, Gao Z, Wang L, et al. The impact of urbanization on wind speed and surface aerodynamic characteristics in Beijing during 1991-2011[J]. Meteorology and Atmospheric Physics, 2018, 130(3):311-324.
[9] Shiau B S. Velocity spectra and turbulence statistics at thenortheastern coast of Taiwan underhigh-wind conditions[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88(2-3):139-151.
[10] Kato N, Ohkuma T, Kim J R, et al. Full scalemeasurements of wind speed in two urban areas using anultrasonic anemometer[J]. Journal of Wind Engineeringand Industrial Aerodynamics, 1992, 41(1/2/3):67-78.
[11] Van der Hoven I. Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour[J]. Journal of Meteorology, 1957, 14:160-164.
[12] Courtney M S, Troen I. Wind speed spectrum for one year of continuous 8 Hz measurements[C]//Proceedings of the Ninth AMS Symposium on Turbulence and Diffusion, Boston, MA, USA, 1990:301-304.
[13] Jensen N O. Atmospheric boundary layers and turbulence[C]//Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark. 1999.
[14] Richards P J, Hoxey R P, Short J L. Spectral models for the neutral atmospheric surface layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 87(2/3):167-185.
[15] Harris R I. The macrometeorological spectrum-A preliminary study[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12):2294-2307.
[16] 彭珍. 北京325 m气象塔观测资料的统计分析[D]. 北京:中国科学院研究生院(大气物理研究所), 2005. Peng Zhen. Statistical analysis of observational data of Beijing 325 m Meteorological Tower[D]. Beijing:Graduate School of Chinese Academy of Sciences (Institute of Atmospheric Physics), 2005. (in Chinese)
[17] 夏冬生. 北京城区大气稳定性及近地强风特性实测研究[D]. 北京:北京交通大学, 2015. Xia Dongsheng. Field measurements of atmospheric stability and strong wind characteristics near ground in urban area of Beijing[D]. Beijing:Beijing Jiaotong Univeristy, 2015. (in Chinese)
[18] Shin K, Hammond J K. Fundamental of signal processing for sound and vibration engineers[M]. England:John Wiley & Sons Ltd, 2008.
[19] AIJ 2015, AIJ recommendationsfor loads on buildings[S]. Tokyo:Architechtural Institute of Japan, 2015.
[20] ASCE 7-16, Minimum design loads for buildings and other structures[S]. New York:American Society of Civil Engineers, 2017.
[21] GB 50009-2012, 建筑结构荷载规范[S]. 北京:中国建筑工业出版, 2012. GB 50009-2012, Loadcode for the design of building structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[1] 孙瑛, 武涛, 武岳. 带抗风夹的直立锁边屋面系统抗风性能的参数研究[J]. 工程力学, 2020, 37(2): 183-191.
[2] 季熠, 李彦斌, 杭晓晨, 廖涛, 费庆国. 基于响应面代理模型的雷达天线阵面风载分析[J]. 工程力学, 2019, 36(11): 222-229.
[3] 郑晓伟, 李宏男, 李超, 刘杨, 张皓. 基于乘法定理和AL模型的风速风向联合概率分布的研究及应用[J]. 工程力学, 2019, 36(10): 50-57,85.
[4] 宋淳宸, 苏延文, 黄国庆, 刘瑞莉, 杨成. 基于多元EMD-AM/FM分解的多点非平稳雷暴风速模拟[J]. 工程力学, 2019, 36(7): 109-115,125.
[5] 陈琳琳, 崔会敏, 郑云飞, 刘庆宽. 大跨柱面网壳结构风荷载试验研究[J]. 工程力学, 2019, 36(S1): 189-193.
[6] 安苗, 刘庆宽, 马文勇, 刘小兵. 椭圆形体育馆悬挑罩棚风荷载分布规律的试验研究[J]. 工程力学, 2019, 36(S1): 199-202.
[7] 孙一飞, 张磊杰, 刘庆宽, 刘小兵, 马文勇. 封闭形式对大跨度煤棚风荷载影响研究[J]. 工程力学, 2019, 36(S1): 234-239.
[8] 王策, 刘庆宽, 贾娅娅. 双圆形煤棚风荷载分布研究[J]. 工程力学, 2019, 36(S1): 165-169.
[9] 李维勃, 王国砚, 钱志浩, 王昊. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
[10] 刘章军, 叶永友, 刘增辉. 脉动风速连续随机场的降维模拟[J]. 工程力学, 2018, 35(11): 8-16.
[11] 杨庆山, 田玉基, 陈波, 黄国庆. 行业标准《屋盖结构风荷载标准》的主要内容[J]. 工程力学, 2018, 35(7): 1-6.
[12] 杨群, 刘小兵, 刘庆宽, 马文勇. 正品字形布置三管钢烟囱风荷载的数值模拟[J]. 工程力学, 2017, 34(增刊): 154-158.
[13] 周晅毅, 谭敏海, 晏克勤, 顾明, 胡学富. 风致积雪重分布的拉格朗日方法与现场实测研究[J]. 工程力学, 2017, 34(2): 21-27.
[14] 王新, 黄生洪, 李秋胜. 龙卷风动态冲击高层建筑风荷载数值模拟[J]. 工程力学, 2016, 33(9): 195-203.
[15] 艾辉林, 周志勇. 超高层建筑外表面复杂装饰条的风荷载特性研究[J]. 工程力学, 2016, 33(8): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日