工程力学 ›› 2020, Vol. 37 ›› Issue (2): 192-200.doi: 10.6052/j.issn.1000-4750.2019.03.0143

• 土木工程学科 • 上一篇    下一篇

基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法

林阳, 封周权, 华旭刚, 陈政清   

  1. 湖南大学风工程与桥梁工程湖南省重点实验室, 湖南, 长沙 410082
  • 收稿日期:2019-03-27 修回日期:2019-07-04 出版日期:2020-02-25 发布日期:2019-07-19
  • 通讯作者: 封周权(1982-),男,湖南人,助理教授,博士,硕导,主要从事风工程及结构监测与控制研究(E-mail:zqfeng@hnu.edu.cn). E-mail:zqfeng@hnu.edu.cn
  • 作者简介:林阳(1996-),男,河南人,硕士生,主要从事桥梁风工程研究(E-mail:linyang@hnu.edu.cn);华旭刚(1978-),男,浙江人,教授,博士,博导,主要从事风工程研究(E-mail:cexghua@hnu.edu.cn);陈政清(1947-),男,湖南人,教授,博士,博导,主要从事工程力学研究(E-mail:zqchen@hnu.edu.cn).
  • 基金资助:
    国家自然科学基金项目(51708203);湖南省高校创新平台开放基金项目(17K022);中央高校基本科研业务费项目(531118010047)

ARTIFICIAL BEE COLONY ALGORITHM FOR FLUTTER DERIVATIVES IDENTIFICATION OF BRIDGE DECKS USING FREE VIBRATION RECORDS

LIN Yang, FENG Zhou-quan, HUA Xu-gang, CHEN Zheng-qing   

  1. Key Laboratory for Wind and Bridge Engineering of Hunan Province, Hunan University, Changsha, Hunan 410082, China
  • Received:2019-03-27 Revised:2019-07-04 Online:2020-02-25 Published:2019-07-19

摘要: 基于桥梁节段模型风洞试验自由振动衰减时程信号,提出了桥梁断面颤振导数识别的人工蜂群算法。基于最小二乘原理,将竖弯和扭转信号的整体残差平方和作为目标函数,使用人工蜂群算法对相关参数进行寻优搜索,识别出桥梁断面的颤振导数。与其他迭代算法相比,人工蜂群算法是受生物启发产生的寻优算法,对初值没有要求,从而避免了迭代初值对识别精度的影响。为考察人工蜂群算法在桥梁断面颤振导数识别中的有效性,进行了理想平板模型仿真以及某大桥节段模型风洞试验,结果表明,桥梁断面颤振导数识别的人工蜂群算法具有较好的稳定性和可靠性。

关键词: 桥梁工程, 颤振导数, 人工蜂群算法, 参数识别, 优化方法

Abstract: Based on the coupled free vibration records of bridge deck sectional model testing, a flutter derivatives identification method based on the artificial bee colony (ABC) algorithm is proposed. The objective function is constructed as the ensemble residual quadratic sum of the vertical and torsional vibration time histories in the sense of least squares. The ABC algorithm is used to search the optimal parameters so that the value of the objective function is minimized. Compared with other iteration methods, the ABC algorithm can facilitate the identification process with no need for initial values. In order to investigate the effectiveness of the ABC algorithm in the flutter derivatives identification, an ideal thin-plate model simulation and a real bridge sectional model testing are carried out. The results show that the ABC algorithm for the flutter derivatives identification of bridge decks is robust and reliable.

Key words: bridge engineering, flutter derivatives, artificial bee colony algorithm, parameter identification, optimization method

中图分类号: 

  • U441.3
[1] 徐昕宇, 李永乐, 廖海黎, 等. 双层桥面桁架梁三塔悬索桥颤振性能优化风洞试验[J]. 工程力学, 2017, 34(5):142-147. Xu Xinyu, Li Yongle, Liao Haili, et al. Flutter optimization of a double-deck truss-stiffened girder three-tower suspension bridge by wind tunnel tests[J]. Engineering Mechanics, 2017, 34(5):142-147. (in Chinese)
[2] 祝志文, 顾明, 陈政清. 桥梁断面颤振导数的CFD全带宽识别法[J]. 工程力学, 2007, 24(9):80-87. Zhu Zhiwen, Gu Ming, Chen Zhengqing. Extraction of flutter derivatives of bridge deck among full bandwidth of reduced wind speeds[J]. Engineering Mechanics, 2007, 24(9):80-87. (in Chinese)
[3] Xu F Y, Zhang Z B. Free vibration numerical simulation technique for extracting flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 170:226-237.
[4] Andersen M S, Ole Johansson J, Brandt A. Flutter derivatives from free decay tests of a rectangular B/D=10 section estimated by optimized system identification methods[J]. Engineering Structure, 2018, 156:284-293.
[5] Ding Q S, Dong S H, Zhou Z Y. Identification of aerodynamic derivatives of bridge decks at high testing wind speed[J]. Canadian Journal of Civil Engineering, 2018, 45(11):1004-1014.
[6] Ding Q S, Zhou Z Y, Zhu L D, et al. Identification of flutter derivatives of bridge decks with free vibration technique[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):911-918.
[7] Bartoli G, Contri S, Mannini C, et al. Toward an improvement in the identification of bridge deck flutter derivatives[J]. Journal of Engineering Mechanics, 2009, 135(8):771-785.
[8] 陈政清, 胡建华. 桥梁颤振导数识别的时域法与频域法对比研究[J]. 工程力学, 2005, 22(6):127-133. Chen Zhengqing, Hu Jianhua. A comparative study between time-domain method and frequencydomain method for identification of bridge flutter derivatives[J]. Engineering Mechanics, 2005, 22(6):127-133. (in Chinese)
[9] 王骑, 李郁林, 李志国, 等. 不同风攻角下薄平板的颤振导数[J]. 工程力学, 2018, 35(10):13-19. Wang Qi, Li Yulin, Li Zhiguo, et al. Flutter derivatives of a thin plate model under different attack angles[J]. Engineering Mechanics, 2018, 35(10):13-19. (in Chinese)
[10] 秦仙蓉, 顾明. 紊流风场中桥梁气动导数识别的随机方法[J]. 土木工程学报, 2005, 38(4):73-77. Qin Xianrong, Gu Ming. Stochastic system method for identification of aerodynamic derivatives of bridge decks in turbulent flow[J]. China Civil Engineering Journal, 2005, 38(4):73-77. (in Chinese)
[11] Boonyapinyo V, Janesupasaeree T. Data-driven stochastic subspace identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12):784-799.
[12] 张若雪.桥梁结构气动参数识别的理论和试验研究[D]. 上海:同济大学, 1998:1-112. Zhang Ruoxue. Theoretical and experiment study on identification of aerodynamic derivatives of bridge decks[D]. Shanghai:Tongji University, 1998:1-112. (in Chinese)
[13] 丁泉顺. 大跨度桥梁耦合颤抖振响应的精细化分析[D]. 上海:同济大学, 2001:10-90. Ding Quanshun. Refinement of coupled flutter and buffeting analysis for long-span bridges[D]. Shanghai:Tongji University, 2001:10-90. (in Chinese)
[14] 李加武, 张斐, 吴拓. 桥梁断面颤振导数识别的加权最小二乘法[J]. 振动工程学报, 2017, 30(6):993-1000. Li Jiawu, Zhang Fei, Wu Tuo. Weighted least square method for identification of flutter derivatives of bridge section[J]. Journal of vibration engineering, 2017, 30(6):993-1000. (in Chinese)
[15] Gu M, Zhang R X, Xiang H F. Identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 84(2):151-162.
[16] 李永乐, 廖海黎, 强士中. 桥梁断面颤振导数识别的加权整体最小二乘法[J]. 土木工程学报, 2004, 37(3):80-84. Li Yongle, Liao Haili, Qiang Shizhong. Identification for flutter derivatives of bridge deck cross section by weighting ensemble least-square method[J]. China Civil Engineering Journal, 2004, 37(3):80-84. (in Chinese)
[17] 祝志文, 顾明. 基于自由振动响应识别颤振导数的特征系统实现算法[J]. 振动与冲击, 2006, 25(5):28-31. Zhu Zhiwen, Gu Ming. Identification of flutter derivatives by using eigensystem realization algorithm[J]. Journal of Vibration and Shock, 2006, 25(5):28-31. (in Chinese)
[18] 李友祥, 祝志文, 陈政清. 识别桥梁断面颤振导数的快速相关特征系统实现算法[J]. 振动与冲击, 2008(8):117-120. Li Youxiang, Zhu Zhiwen, Chen Zhengqing. Implementation of eigensystem realization algorithm with data correlation to identify flutter derivatives of bridges[J]. Journal of Vibration and Shock, 2008(8):117-120. (in Chinese)
[19] 许福友, 陈艾荣, 张哲. 识别桥梁断面18个颤振导数的梯度下降算法[J]. 工程力学, 2008, 25(6):81-87. Xu Fuyou, Chen Airong, Zhang Zhe. Identification of 18 flutter derivatives of bridge decks using gradient declining algorithm[J]. Engineering Mechanics, 2008, 25(6):81-87. (in Chinese)
[20] 许福友, 陈艾荣, 马如进. 桥梁断面颤振导数识别的随机搜索方法[J]. 土木工程学报, 2006, 39(7):63-68. Xu Fuyou, Chen Airong, Ma Rujin. Identification of flutter derivatives of bridge decks on the basis of stochastic search technique[J]. China Civil Engineering Journal, 2006, 39(7):63-68. (in Chinese)
[21] Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-TRo6[R]. Kayseri:Erciyes University, 2005:1-10.
[22] 陈政清. 桥梁风工程[M]. 北京:人民交通出版社, 2005:5. Cheng Zhengqing. Bridge wind engineering[M]. Beijing:China Communications Press, 2005:5. (in Chinese)
[23] 江铭炎, 袁东风. 人工蜂群算法及其应用[M]. 北京:科学出版社, 2014:11. Jiang Mingyan, Yuan Dongfeng. Atificial bee colony algorithm and its application[M]. Beijing:Science Press, 2014:11. (in Chinese)
[24] Theodorson T. General theory of aerodynamic instability and mechanism of flutter[R]. Washington:NACA Report No.496, 1935:413-433.
[1] 李游, 李传习, 陈卓异, 贺君, 邓扬. 基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J]. 工程力学, 2020, 37(2): 111-123.
[2] 王佳萍, 杜成斌, 王翔, 江守燕. 基于XFEM和改进人工蜂群算法的结构内部缺陷反演[J]. 工程力学, 2019, 36(9): 25-31.
[3] 王春生, 王世超, 王茜, 沈建成, 段兰. 危旧预应力混凝土箱梁承载性能足尺试验[J]. 工程力学, 2019, 36(8): 171-181.
[4] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[5] 张肖雄, 贺佳. 基于扩展卡尔曼滤波的结构参数和荷载识别研究[J]. 工程力学, 2019, 36(4): 221-230.
[6] 黄福云, 龙腾飞, 杨芳芳, 董锐. 钢管混凝土单圆管拱模型重力失真影响振动台试验研究[J]. 工程力学, 2019, 36(12): 52-61.
[7] 秦超, 颜王吉, 孙倩, 任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222.
[8] 夏志远, 李爱群, 李建慧, 陈鑫. 基于GMPSO的有限元模型修正方法验证[J]. 工程力学, 2019, 36(10): 66-74.
[9] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[10] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[11] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[12] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[13] 颜王吉, 王朋朋, 孙倩, 任伟新. 基于振动响应传递比函数的系统识别研究进展[J]. 工程力学, 2018, 35(5): 1-9,26.
[14] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[15] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日