工程力学 ›› 2020, Vol. 37 ›› Issue (2): 159-167,191.doi: 10.6052/j.issn.1000-4750.2019.03.0130

• 土木工程学科 • 上一篇    下一篇

考虑梁轴向约束效应的RC梁柱节点受力机理及抗震性能试验研究

王丽萍1,2, 罗文文1,2, 刘思危1, 张伟1, 蒋利成1, 杨仕建1   

  1. 1. 重庆科技学院建筑工程学院, 重庆 401331;
    2. 能源工程力学与防灾减灾重庆市重点实验室, 重庆 401331
  • 收稿日期:2019-03-25 修回日期:2019-08-01 出版日期:2020-02-25 发布日期:2019-08-12
  • 通讯作者: 罗文文(1987-),男,四川绵阳人,讲师,博士,主要从事工程结构抗震研究(E-mail:luowenwen326@163.com). E-mail:luowenwen326@163.com
  • 作者简介:王丽萍(1980-),女,河南太康人,副教授,博士,主要从事地震工程与结构抗震研究(E-mail:wangliping98@163.com);刘思危(1993-),男,四川广安人,硕士生,主要从事钢筋混凝土结构抗震性能研究(E-mail:510031087@qq.com);张伟(1991-),男,重庆荣昌人,硕士生,主要从事钢筋混凝土结构抗震性能研究(E-mail:632270766@qq.com);蒋利成(1994-),男,四川广安人,硕士生,主要从事钢筋混凝土结构抗震性能研究(E-mail:976701693@qq.com);杨仕建(1994-),男,重庆荣昌人,硕士生,主要从事钢筋混凝土结构抗震性能研究(E-mail:815953755@qq.com).
  • 基金资助:
    国家自然科学基金项目(51808087);重庆市自然科学基金项目(cstc2018jcyjAX0695,cstc2018jcyjAX0052);重庆科技学院校内科研基金项目(CK2016Z14,ck2017zkyb016)

EXPERIMENTAL INVESTIGATION OF BEAM ELONGATION EFFECTS ON THE MECHANISM AND SEISMIC PERFORMANCE OF RC FRAME JOINTS

WANG Li-ping1,2, LUO Wen-wen1,2, LIU Si-wei1, ZHANG Wei1, JIANG Li-cheng1, YANG Shi-jian1   

  1. 1. Chongqing University of Science and Technology, Chongqing 401331, China;
    2. Chongqing Key Laboratory of Energy Engineering Mechanics&Disaster Prevention and Mitigation, Chongqing 401331, China
  • Received:2019-03-25 Revised:2019-08-01 Online:2020-02-25 Published:2019-08-12

摘要: 钢筋混凝土(RC)框架梁受弯损伤会发生轴向伸长,周边构件(抗侧力构件、现浇板)对梁伸长的约束作用会在梁中产生不可低估的轴力,从而影响梁柱构件和节点的抗震性能以及结构的强震破坏模式。分析了梁中约束轴力对节点抗剪受力机理的影响,设计了6个1/2比例的RC梁柱子结构试件,采用可直接量测约束轴力的等效约束装置代替周边构件对梁伸长的约束作用,通过低周往复加载试验考察了梁轴向约束效应对节点抗剪需求、抗剪承载力以及损伤破坏模式的影响。结果表明,约束轴力对抗剪需求的影响比抗剪承载力的影响明显,梁轴向约束效应产生的轴力较大,且随梁弯曲变形的增大而增加。与无约束试件相比,考虑梁轴向约束效应的试件节点抗剪需求增大了1.14~2.22倍,节点区斜裂缝宽度较大,损伤情况更加严重。

关键词: 钢筋混凝土框架, 梁柱节点, 梁伸长, 约束轴力, 抗剪需求

Abstract: Reinforced concrete (RC) beams tend to elongate after flexural cracking and yielding. The elongation is restrained by the surrounding structural components in the RC frame and therefore axial comprehensive force is formed. The seismic performance and failure modes of RC frame joints are affected by the unexpected axial compressive force. The influence of axial restraint force on the shear transfer mechanism of the joints was analyzed. Six 1/2-scale RC beam-column subassemblies, four of which were restrained by an equivalent device, were tested under cyclic loading to study the impacts of the beam elongation on the seismic shear demand, strength and failure modes. The results show that the beam elongation effects on the seismic shear demand were more obvious than those on the strength. The beam elongation caused large compressive axial force in beams with the increase of the beam bending deformation. Compared with the unrestrained specimens, the shear demand of the joints due to the axial restraint force was increased by 1.14~2.22 times. The widths of the inclined cracks in the joint area were larger, and the damage to the joints were relatively more serious in the axially restrained specimens.

Key words: RC frames, beam-column joint, beam elongation, axial restraint force, shear resistance demand

中图分类号: 

  • TU375.4
[1] 叶列平, 曲哲, 马千里, 等. 从汶川地震框架结构震害谈"强柱弱梁"屈服机制的实现[J]. 建筑结构, 2008, 38(11):52-59. Ye Lieping, Qu Zhe, Ma Qianli, et al. Study on ensuring the strong column-weak beam mechanism for RC frames based on the damage analysis in the Wenchuan earthquake[J]. Building Structure, 2008, 38(11):52-59. (in Chinese)
[2] 王威, 薛建阳, 章红梅, 等. 框架结构在汶川5.12大地震中的震害分析及抗震启示[J]. 世界地震工程, 2009, 25(4):131-135. Wang Wei, Xue Jianyang, Zhang Hongmei, et al. Seismic design and lessons learnt from the earthquake disaster of frame structures in 5.12 Wenchuan earthquake[J]. World Earthquake Engineering, 2009, 25(4):131-135. (in Chinese)
[3] 田志鹏, 张新培, 赵统. 汶川地震中多层钢筋混凝土框架结构房屋震害分析[J]. 建筑结构, 2009, 39(11):67-71. Tian Zhipeng, Zhang Xinpei, Zhao Tong. Seismic damage of multilayer reinforced concrete frame structures in Wenchuan earthquake[J]. Building Structure, 2009, 39(11):67-71. (in Chinese)
[4] 周威, 郑文忠, 佟佳颖, 等. 汶川地震中房屋震害分析与震损房屋抗震加固[J]. 哈尔滨工业大学学报, 2013(12):1-9. Zhou Wei, Zheng Wenzhong, Tong Jiaying, et al. Seismic strengthening and damage analysis of buildings in Wenchuan earthquake[J]. Journal of Harbin Institute of Technology, 2013(12):1-9. (in Chinese)
[5] Fenwick R C, Megget L M. Elongation and load deflection characteristics of reinforced concrete members containing plastic hinges[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1993, 26(1):28-41.
[6] Ashtiani M S, Dhakal R P, Scott A N. Seismic performance of high-strength self-compacting concrete in reinforced concrete beam-column joints[J]. Journal of Structural Engineering, 2014, 140(5):401-402.
[7] Encina E, Lu Y, Henry R S. Axial elongation in ductile reinforced concrete walls[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2016, 49(4):305-318.
[8] Kokusho S, Hayashi S, Wada A, et al. Behaviors of reinforced concrete beam subjected to the axial restriction of deformation[C]//Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan, 1988:463-468.
[9] Zerbe H E, Durrani A J. Seismic response of connections in two-bay rc frame subassemblies[J]. Journal of Structural Engineering, 1989, 115(11):2829-2844.
[10] Sakata H, Wada A. Elasto-plastic behavior of one-twentieth scale RC frame[C]//Proceedings of Tenth World Conference on Earthquake Engineering. Balkema, Rotterdam, 1992:3335-3340.
[11] Maeda M, Kabeyasawa T, Sanada Y. Test and analysis of reinforced concrete beams under axial restraint[C]//U.S.-Japan Workshop on Performance-Based Earthquake Engineering Methodology for Reinforced Concrete Building Structures. Hawaii, USA, 1999:203-215.
[12] Kim J, Stanton J, Macrae G. Effect of beam growth on reinforced concrete frames[J]. Journal of Structural Engineering, 2004, 130(9):1333-1342.
[13] GB50011-2010, 建筑抗震设计规范(2016年版)[S].北京:中国建筑工业出版社, 2016. GB50011-2010, Code for seismic design of buildings (2016)[S]. Beijing:Building Industry Press of China, 2016. (in Chinese)
[14] 傅剑平, 游渊, 白绍良. 钢筋混凝土抗震框架节点传力机构分析[J]. 重庆建筑大学学报, 1996(2):43-52. Fu Jianping, You Yuan, Bai Shaoliang. Analysis of the force transmission mechanism of reinforced concrete seismic frame joints[J]. Journal of Chongqing Jianzhu University, 1996(2):43-52. (in Chinese)
[15] 傅剑平, 白绍良, 王峥, 等. 考虑轴压比影响的钢筋混凝土框架内节点抗震性能试验研究[J]. 重庆建筑大学学报, 2000(增刊1):60-66. Fu Jianping, Bai Shaoliang, Wang Zheng, et al. Experimental study on seismic behavior of joints in reinforced concrete frames considering axial-compression ratio[J]. Journal of Chongqing Jianzhu University, 2000(Suppl1):60-66. (in Chinese)
[16] 傅剑平, 张川, 陈滔, 等. 钢筋混凝土抗震框架节点受力机理及轴压比影响的试验研究[J]. 建筑结构学报, 2006, 27(3):67-77. Fu Jianping, Zhang Chuan, Chen Tao, et al. Experimental investigation of shear mechanism and effect of axial-compression ratio on joints in earthquake-resistant reinforced concrete frames[J]. Journal of Building Structures, 2006, 27(3):67-77. (in Chinese)
[17] 唐九如. 部分预应力框架梁柱节点在反复荷载下的受力性能[J]. 建筑结构学报, 1987, 5(1):1-15. Tang Jiuru. Mechanical behavior of partially prestressed frame beam-column joints under bidirectional cyclic loading[J]. Journal of Building Structures, 1987, 5(1):1-15. (in Chinese)
[18] 唐久如, 陈竣辉, 花霞萍. 预应力硅框架节点受剪承载力分析[J]. 建筑结构, 1992, 22(1):20-26. Tang Jiuru, Chen Junhui, Hua Xiaping. Pre-stressed silicon frame frame point shear bearing capacity analysis[J]. Building Structures, 1992, 22(1):20-26. (in Chinese)
[19] JGJ 140-2004, 预应力混凝土结构抗震设计规范[S]. 北京:中国建筑工业出版社, 2004. JGJ 140-2004, Specification for seismic design of prestressed concrete structures[S]. Beijing:Building Industry Press of China, 2004. (in Chinese)
[20] NZS 3101-1, Concrete structures standard-the design of concrete structures[S]. New Zealand Standard:Wellington, New Zealand, 2006.
[21] Federal Emergency Management Agency. Prestandard and commentary for the seismic rehabilitation of buildings (FEMA 356)[R]. Washington, D.C:Federal Emergency Management Agency, 2000.
[22] ACI 374.1-05(R2014), Acceptance criteria for moment frames based on structural testing and commentary[S]. Detroit:American Concrete Institute, 2014.
[1] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[2] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[3] 王元清, 乔学良, 贾连光, 张天雄, 蒋庆林. 单调加载下不锈钢结构梁柱栓焊混用节点承载性能分析[J]. 工程力学, 2019, 36(S1): 59-65.
[4] 邓明科, 马福栋, 叶旺, 殷鹏飞. 局部采用高延性混凝土装配式框架梁-柱节点抗震性能试验研究[J]. 工程力学, 2019, 36(9): 68-78.
[5] 高佳明, 刘伯权, 黄华, 周长泉. 带板钢筋混凝土框架连续倒塌理论分析[J]. 工程力学, 2018, 35(7): 117-126.
[6] 侯和涛, 朱文灿, 曲哲, 崔士起. 屈曲约束支撑钢筋混凝土框架结构干式柔性梁柱节点的试验研究[J]. 工程力学, 2018, 35(6): 151-161.
[7] 李灿军, 周臻, 谢钦. 摩擦耗能型SMA杆自复位梁柱节点滞回性能分析[J]. 工程力学, 2018, 35(4): 115-123.
[8] 颜欣桐, 徐龙河. 基于遗传算法的钢筋混凝土框架-剪力墙结构失效模式多目标优化[J]. 工程力学, 2018, 35(4): 69-77.
[9] 刘浩, 李宏男. 考虑累积损伤退化及应变率效应的钢筋混凝土框架结构倒塌分析[J]. 工程力学, 2018, 35(4): 87-95.
[10] 张家广, 吴斌, 赵俊贤. 防屈曲支撑加固钢筋混凝土框架的实用设计方法[J]. 工程力学, 2018, 35(3): 151-158.
[11] 王磊, 班慧勇, 石永久, 王元清. 基于微观断裂机理的高强钢框架梁柱节点抗震性能有限元分析[J]. 工程力学, 2018, 35(11): 68-78.
[12] 杨勇, 陈展, 王念念, 张波. 预应力钢带加固RC框架节点抗震性能试验研究[J]. 工程力学, 2018, 35(11): 106-114,154.
[13] 周洲, 于晓辉, 吕大刚. 主余震序列作用下钢筋混凝土框架结构的易损性分析及安全评估[J]. 工程力学, 2018, 35(11): 134-145.
[14] 张沛洲, 孙宝印, 古泉, 欧进萍. 基于数值子结构方法的低延性RC框架结构抗震性能精细化分析[J]. 工程力学, 2017, 34(增刊): 38-48.
[15] 白久林, 金双双, 欧进萍. 钢筋混凝土框架结构强柱弱梁整体失效模式可控设计[J]. 工程力学, 2017, 34(8): 51-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日