工程力学 ›› 2020, Vol. 37 ›› Issue (2): 111-123.doi: 10.6052/j.issn.1000-4750.2019.03.0114

• 土木工程学科 • 上一篇    下一篇

基于监测数据的钢箱梁U肋细节疲劳可靠性分析

李游1,2, 李传习1,2, 陈卓异1, 贺君1, 邓扬3   

  1. 1. 长沙理工大学土木工程学院, 湖南, 长沙 410114;
    2. 长沙理工大学桥梁工程安全控制教育部重点实验室, 湖南, 长沙 410114;
    3. 北京建筑大学土木与交通工程学院, 北京 100044
  • 收稿日期:2019-03-14 修回日期:2019-08-10 出版日期:2020-02-25 发布日期:2019-10-12
  • 通讯作者: 李传习(1963-),男,湖南人,教授,博士,博导,院长,主要从事桥梁结构理论与新材料、新技术、新结构研究(E-mail:lichuanxi2@163.com). E-mail:lichuanxi2@163.com
  • 作者简介:李游(1991-),男,湖南人,博士生,主要从事钢桥疲劳与新材料、新技术、新结构研究(E-mail:liyou_2@163.com);陈卓异(1985-),男,湖南人,讲师,博士,主要从事钢桥疲劳与断裂力学研究(E-mail:chenzyhit@163.com);贺君(1981-),男,湖南人,副教授,博士,主要从事组合结构桥梁与钢桥研究(E-mail:frankhejun@gmail.com);邓扬(1984-),男,湖南人,副教授,博士,主要从事结构健康监测研究(E-mail:seudengyang@foxmail.com).
  • 基金资助:
    国家自然科学基金项目(51778069,51708047);国家973项目(2015CB057701,2015CB057702);广东省交通厅科技项目(201602010);湖南省研究生科研创新重点项目(CX20190635);桥梁工程安全控制教育部重点实验室开放基金项目(16BCX12);湖南省自然科学基金项目(2019JJ50670)

FATIGUE RELIABILITY ANALYSIS OF U-RIB DETAIL OF STEEL BOX GIRDER BASED ON MONITORING DATA

LI You1,2, LI Chuan-xi1,2, CHEN Zhuo-yi1, HE Jun1, DENG Yang3   

  1. 1. School of Civil Engineering, Changsha University of Science&Technology, Changsha, Hunan 410114, China;
    2. Key Laboratory of Safety Control for Bridge Engineering of the Ministry of Education, Changsha University of Science&Technology, Changsha, Hunan 410114, China;
    3. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2019-03-14 Revised:2019-08-10 Online:2020-02-25 Published:2019-10-12

摘要: 针对某悬索桥钢箱梁疲劳开裂严重,基于WIM动态称重系统采集的数据,对该桥通行车辆的车型、轴距、轴重、总重、是否超载进行了统计,明确了该桥交通荷载特征及各车道随机车流差异性,依据实桥动应变监测数据,运用雨流计数法及Palmgren-Miner线性损伤累积理论,获得了运营状态下各车道的疲劳应力谱,基于均匀设计-径向基神经网络-重要蒙特卡罗法(UD-RBF-IMC)相结合的算法,运用线弹性断裂力学对U肋对接焊缝疲劳可靠性进行了评估,研究了交通量及轴重增长对疲劳可靠度的影响规律。研究结果表明:该桥疲劳车型可简化为V2~V10共9类,左、右幅V2车型的总重均为单峰偏态分布,超载率不到4%,V3~V10车型的总重均为多峰分布,超载率大于30%,最高达69%;重车道V2~V10车型的比例明显高于其他车道;温度日变化对疲劳应力谱的影响较小,采样频率对应力谱的影响较为显著,不宜小于50 Hz;结合UD、RBF、IMC算法各自的优点,有效提高了基于监测数据的钢箱梁细节疲劳可靠度指标的求解精度和效率;轴重增长系数对疲劳可靠度的影响明显大于交通量增长系数,在运营期间除控制交通量外,还需重点控制重车比例和超载率;当交通量增长系数为3%,轴重增长系数为0.6%时,1#测点疲劳寿命仅为74年;超车道重载卡车数量较少,高水平应力循环较少,疲劳寿命较长,而快车道和重车道重载卡车较多,高水平应力循环较多,存在疲劳开裂风险,需重点关注。

关键词: 桥梁工程, 钢箱梁, 交通荷载特征, 疲劳可靠度, 动应变监测, 线弹性断裂力学

Abstract: Aimed at the problem that there is serious fatigue cracking in the steel box girder of a suspension bridge, the vehicle type, wheelbase, axle load, total weight and overload of the bridge are statistically analyzed, and the traffic load characteristics of the bridge and the difference of random traffic flow in each lane are clarified by the base of the data collected by a WIM dynamic weighing system. According to the dynamic strain monitoring data of a real bridge, the fatigue stress spectrum of each lane under operating condition was obtained by using the rain-flow counting method and the Palmgren-Miner linear damage accumulation theory. Based on the UD-RBF-IMC algorithm, the fatigue reliability of U-rib butt weld was evaluated by linear elastic fracture mechanics. The influence of traffic volume and the shaft weight on fatigue reliability were studied. The result show that:the type of a fatigue vehicle can be simplified to V2-V10, a total of 9 categories, the total weights of V2 vehicles are a unimodal skewed distribution, overload rate of less than 4%, the total weights of V3-V10 vehicles are multi-peak distribution, overload rate greater than 30%, up to 69%. The proportion of V2-V10 vehicles of a heavy lane is obviously higher than that of other lanes. The daily variation of temperature has little effect on the fatigue stress spectrum, and the influence of sampling frequency on the stress spectrum is significant, which should not be less than 50 Hz. Combining the respective advantages of UD, RBF and IMC, the accuracy and efficiency of the fatigue reliability index of steel box girders based on monitoring data are effectively improved. The effect of axle weight growth coefficients on fatigue reliability is obviously greater than that of traffic volume growth. In addition to controlling the traffic volume during operation, it is also necessary to focus on controlling the proportion of heavy vehicles and overloading rate. When the growth coefficient of traffic volume is 3% and the growth coefficient of axle load is 0.6%, the fatigue life of measuring point 1# is only 74 years. The number of overloaded heavy-duty trucks of passing lane is less, the high-level stress cycles are less, and the fatigue life is longer, while the number of heavy-haul trucks of a fast lane and a heavy lane is more, the high-level stress cycles are more, there is a risk of fatigue cracking, which should be paid more attention to.

Key words: bridge engineering, steel box girder, traffic load characteristic, fatigue reliability, dynamic strain monitoring, linear elastic fracture mechanics

中图分类号: 

  • U441.4
[1] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(增刊1):98-105. Yang Yabin, Shi Guangyu. Evaluation of finite element analysis models for fatigue stress at rib-to-deck welded joints of orthotropic steel deck[J]. Engineering Mechanics, 2019, 36(Suppl 1):98-105. (in Chinese)
[2] 卜一之, 金通, 李俊, 等. 纵肋与横隔板交叉构造细节穿透型疲劳裂纹扩展特性及其加固方法研究[J]. 工程力学, 2019, 36(6):211-218. Bu Yizhi, Jin Tong, Li Jun, et al. Research on propagation characteristics and reinforcement method of penetrating crack at rib-to-diaphragm welded joints in steel bridge deck[J]. Engineering Mechanics, 2019, 36(6):211-218. (in Chinese)
[3] Heng J L, Zheng K F, Gou C, et al. Fatigue performance of rib-to-deck joints in orthotropic steel decks with thickened edge U-ribs[J]. Journal of Bridge Engineering, 2017, 22(9):1-10.
[4] 刘益铭, 张清华, 张鹏, 等. 港珠澳大桥正交异性钢桥面板U肋对接焊缝疲劳寿命研究[J].中国公路学报, 2016, 29(12):25-33. Liu Yiming, Zhang Qinghua, Zhang Peng, et al. Study on fatigue life of U-rib butt weld in orthotropic steel bridge deck of Hong Kong-Zhuhai-Macao Bridge[J]. China Journal of Highway and Transport, 2016, 29(12):25-33. (in Chinese)
[5] 李传习, 李游, 陈卓异, 等. 钢箱梁横隔板疲劳开裂原因及补强细节研究[J]. 中国公路学报, 2017, 30(3):122-131. Li Chuanxi, Li You, Chen Zhuoyi, et al. Fatigue cracking reason and detail dimension of reinforcement about transverse diaphragm of steel box girder[J]. China Journal of Highway and Transport, 2017, 30(3):122-131. (in Chinese)
[6] 黄云, 张清华, 卜一之, 等. 港珠澳大桥正交异性钢桥面板纵肋现场接头疲劳特性[J]. 中国公路学报, 2016, 29(12):34-43. Huang Yun, Zhang Qinghua, Bu Yizhi, et al. Fatigue properties on field splice joints of longitudinal ribs in orthotropic steel bridge decks of Hong Kong-ZhuhaiMacao Bridge[J]. China Journal of Highway and Transport, 2016, 29(12):34-43. (in Chinese)
[7] Fiorillo G, Ghosn M. Procedure for statistic categorization of overweight vehicles in a WIM database[J]. Journal of Transportation Engineering, 2014, 140(50):1-11.
[8] 宋永生, 丁幼亮, 王晓晶, 等. 运营状态下悬索桥钢桥面板疲劳效应监测与分析[J]. 工程力学, 2013, 30(11):94-100. Song Yongsheng, Ding Youliang, Wang Xiaojing, et al. Monitoring and analysis of fatigue effects on steel deck of a suspension bridge in working conditions[J]. Engineering Mechanics, 2013, 30(11):94-100. (in Chinese)
[9] 祝志文, 黄炎, 向泽. 货车繁重公路的车辆荷载谱和疲劳车辆模型[J]. 交通运输工程学报, 2017, 17(3):13-24. Zhu Zhiwen, Huang Yan, Xiang Ze. Vehicle loading spectrum and fatigue truck models of heavy cargo highway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3):13-24. (in Chinese)
[10] Liu Y, Zhang H P, Deng Y, et al. Effect of live load on simply supported bridges under a random traffic flow based on weigh-in-motion data[J]. Advances in Structural Engineering, 2016, 20(5):1-15.
[11] Liu M, Frangopol D M, Kim S. Bridge system performance assessment from structural health monitoring:A case study[J]. Journal of Structural, 2009, 135(6):733-742.
[12] 鲁乃唯, 刘扬, 邓扬. 随机车流作用下悬索桥钢桥面板疲劳损伤与寿命评估[J].中南大学学报(自然科学版), 2015, 46(11):4300-4306. Lu Naiwei, Liu Yang, Deng Yang. Fatigue damage and life assessment for steel decks of suspension bridge under stochastic traffic flow[J]. Journal of Central South University (Science and Technology), 2015, 46(11):4300-4306. (in Chinese)
[13] Lu N W, Noori M, Liu Y. Fatigue reliability assessment of welded steel bridge decks under stochastic truck loads via machine learning[J]. Journal of Bridge Engineering, 2017, 22(1):1-12.
[14] Liu Y, Zhang H P, Liu Y M, et al. Fatigue reliability assessment for orthotropic steel deck details under traffic flow and temperature loading[J]. Engineering Failure Analysis, 2017, 71(1):179-194.
[15] 邓扬, 丁幼亮, 李爱群. 钢箱梁焊接细节基于长期监测数据的疲劳可靠性评估:疲劳可靠度指标[J]. 土木工程学报, 2012, 45(3):86-92. Deng Yang, Ding Youliang, Li Aiqun. Fatigue reliability assessment for welded details of steel box girders using long-term monitoring data:Fatigue reliability indices[J]. China Civil Engineering Journal, 2012, 45(3):86-92. (in Chinese)
[16] 刘建, 桂勋, 李传习. 基于健康监测的自锚式悬索桥钢箱梁细节疲劳可靠度研究[J]. 公路交通科技, 2015, 32(1):69-75. Liu Jian, Gui Xun, Li Chuanxi. Study on fatigue reliability of details of steel box girders of a self-anchored suspension bridge based on health monitoring[J]. Journal of Highway and Transportation Research and Development, 2015, 32(1):69-75. (in Chinese)
[17] 邓扬, 丁幼亮, 李爱群, 等. 钢箱梁桥焊接细节的疲劳断裂可靠性分析[J].工程力学, 2012, 29(10):122-128. Deng Yang, Ding Youliang, Li Aiqun, et al. Fracture fatigue reliability of welded details in bridge steel box girders[J]. Engineering Mechanics, 2012, 29(10):122-128. (in Chinese)
[18] 叶消伟, 傅大宝, 倪一清, 等. 考虑多因素共同作用的钢桥焊接节点疲劳可靠度评估[J]. 土木工程学报, 2013, 46(10):89-99. Ye Xiaowei, Fu Daobao, Ni Yiqing, et al. Fatigue reliability assessment of welded joints in steel bridges considering multiple effects[J]. China Civil Engineering Journal, 2013, 46(10):89-99. (in Chinese)
[19] Frangopol Dan M, Strauss A, Kim S Y. Bridge reliability assessment based on monitoring[J]. Journal of Bridge Engineering, ASCE, 2008, 13(3):258-270.
[20] Cheng J, Li Q S, Xiao R C. A new artificial neural network-based response surface method for structural reliability analysis[J]. Probabilistic Engineering Mechanics, 2008, 23(1):51-63.
[21] 刘扬, 鲁乃唯, 王勤用. 基于混合算法的大跨度斜拉桥可靠度评估[J].公路交通科技, 2014, 31(7):72-79. Liu Yang, Lu Naiwei, Wang Qinyong. Reliability assessment of long-span cable-stayed bridge based on hybrid algorithm[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7):72-79. (in Chinese)
[22] 李庆芬, 胡胜海, 朱世范.断裂力学及其工程应用[M]. 哈尔滨:哈尔滨工程大学出版社, 2008:6-45. Li Qingfen, Hu Shenghai, Zhu Shifan. Fracture mechanics and engineering application[M]. Harbin:Harbin Engineering University Press, 2008:6-45. (in Chinese)
[23] 幸坤涛, 岳清瑞, 刘洪滨. 钢结构吊车梁疲劳动态可靠度研究[J]. 土木工程学报, 2004, 37(8):38-42. Xing Kuntao, Yue Qingrui, Liu Hongbin. Fatigue dynamic reliability analysis for steel crane girders[J]. China Civil Engineering Journal, 2004, 37(8):38-42. (in Chinese)
[24] Zhao Z W, Haldar A, Breen F L. Fatigue-reliability evaluation of steel bridge[J]. Journal of Structural Engineering, ASCE, 1994, 120(5):1608-1623.
[25] Rackwitz R, Fiessler B. Structural reliability under combined load sequence[J]. Computer and Structures, 1978, 114(12):2195-2199.
[26] Cheng J, Li Q S. Reliability analysis of a long span steel arch bridge against wind-induced stability failure during construction[J]. Journal of Constructional Steel Research, 2009, 65(3):552-558.
[27] Tang Q Y, Zhang C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J]. Insect Science, 2013, 20(2):254-160.
[28] Kwon K, Frangopol D M. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data[J]. International Journal of Fatigue, 2010, 32(8):1221-1232.
[1] 林阳, 封周权, 华旭刚, 陈政清. 基于自由振动响应识别桥梁断面颤振导数的人工蜂群算法[J]. 工程力学, 2020, 37(2): 192-200.
[2] 杨雅斌, 石广玉. 正交异性钢桥面板肋-面板焊缝疲劳验算的应力分析模型评估[J]. 工程力学, 2019, 36(S1): 98-105.
[3] 王春生, 王世超, 王茜, 沈建成, 段兰. 危旧预应力混凝土箱梁承载性能足尺试验[J]. 工程力学, 2019, 36(8): 171-181.
[4] 朱志辉, 张磊, 龚威, 罗思慧, 姚京川, 余志武. 基于模态叠加法和直接刚度法的列车-轨道-桥梁耦合系统高效动力分析混合算法[J]. 工程力学, 2019, 36(4): 196-205.
[5] 黄福云, 龙腾飞, 杨芳芳, 董锐. 钢管混凝土单圆管拱模型重力失真影响振动台试验研究[J]. 工程力学, 2019, 36(12): 52-61.
[6] 倪威康, 王万祯, 贾真, 吴晓聪. 变截面方钢管轻骨料混凝土边柱-钢箱梁折线隔板贯通节点破坏机理和承载力研究[J]. 工程力学, 2019, 36(10): 122-133.
[7] 秦超, 颜王吉, 孙倩, 任伟新. 基于贝叶斯功率谱变量分离方法的实桥模态参数识别[J]. 工程力学, 2019, 36(10): 212-222.
[8] 岳子翔, 温庆杰, 卓涛. 半开式桁架桥结构稳定性分析[J]. 工程力学, 2018, 35(S1): 270-277.
[9] 钟铭. 既有结构混凝土累积损伤原位评估方法[J]. 工程力学, 2018, 35(S1): 278-286.
[10] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
[11] 张建仁, 肖林发, 彭建新, 唐皇. U型箍加固锈蚀RC梁的抗弯性能试验研究及数值分析[J]. 工程力学, 2018, 35(8): 111-121.
[12] 沙奔, 王浩, 陶天友, 吴宜峰, 李爱群. 考虑混凝土损伤的隔震连续梁桥碰撞响应分析[J]. 工程力学, 2018, 35(3): 193-199.
[13] 宋帅, 钱永久, 钱聪. 桥梁地震需求中随机参数的重要性分析方法研究[J]. 工程力学, 2018, 35(3): 106-114.
[14] 叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法[J]. 工程力学, 2018, 35(11): 86-91.
[15] 耿少波, 刘亚玲, 薛建英. 钢箱梁缩尺模型爆炸冲击波作用下破坏实验研究[J]. 工程力学, 2017, 34(增刊): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈有亮;邵伟;周有成. 水饱和混凝土单轴压缩弹塑性损伤本构模型[J]. 工程力学, 2011, 28(11): 59 -063, .
[2] 王坤;谢康和;李传勋;童磊. 特殊条件下考虑起始比降的双层地基一维固结解析解[J]. 工程力学, 2011, 28(11): 78 -082 .
[3] 陆本燕;刘伯权;邢国华;吴涛. 桥梁结构基于性能的抗震设防目标与性能指标研究[J]. 工程力学, 2011, 28(11): 96 -103, .
[4] 陈誉;刘飞飞. 正对称Pratt 桁架直腹杆受压大偏心N型圆钢管节点静力性能实验研究[J]. 工程力学, 2011, 28(11): 170 -177 .
[5] 袁振伟;王海娟;岳希明;褚福磊. 密封进口涡动系数对转子系统动力学性能的影响[J]. 工程力学, 2011, 28(11): 231 -236 .
[6] 王小兵;刘扬;崔海清;韩洪升. 螺旋流抑制杆管偏磨的PIV实验研究[J]. 工程力学, 2011, 28(11): 225 -230 .
[7] 郜新军;赵成刚;刘秦. 地震波斜入射下考虑局部地形影响和土结动力相互作用的多跨桥动力响应分析[J]. 工程力学, 2011, 28(11): 237 -243 .
[8] 吕伟荣;王猛;刘锡军. 灌芯混凝土砌块砌体破坏准则研究[J]. 工程力学, 2011, 28(11): 251 -256 .
[9] 顾致平;和兴锁;方同. 微分对接条件对次谐共振影响的研究[J]. 工程力学, 2006, 23(4): 62 -66 .
[10] 张嘎;张建民. 土与结构接触面弹塑性损伤模型用于单桩与地基相互作用分析[J]. 工程力学, 2006, 23(2): 72 -77 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日