工程力学 ›› 2020, Vol. 37 ›› Issue (3): 36-45,107.doi: 10.6052/j.issn.1000-4750.2019.03.0082

• 基本方法 • 上一篇    下一篇


管俊峰, 宋志锴, 姚贤华, 陈珊珊, 袁鹏, 刘泽鹏   

  1. 华北水利水电大学土木与交通学院, 河南, 郑州 450045
  • 收稿日期:2019-03-03 修回日期:2019-07-24 出版日期:2020-03-25 发布日期:2019-07-26
  • 通讯作者: 管俊峰(1980-),男,河南人,教授,博士,主要从事混凝土岩石断裂力学研究(E-mail:guanjunfeng1980@126.com). E-mail:guanjunfeng1980@126.com
  • 作者简介:宋志锴(1995-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:806931971@qq.com);姚贤华(1976-),男,河南人,实验师,博士,主要从事混凝土损伤与断裂力学研究(E-mail:yaoxianhua@ncwu.edu.cn);陈珊珊(1990-),女,河南人,助教,硕士,主要从事材料与结构基本理论研究(E-mail:chenshanshan@ncwu.edu.cn);袁鹏(1996-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:809783444@qq.com);刘泽鹏(1994-),男,河南人,硕士生,主要从事混凝土岩石断裂力学研究(E-mail:861216643@qq.com).
  • 基金资助:


GUAN Jun-feng, SONG Zhi-kai, YAO Xian-hua, CHEN Shan-shan, YUAN Peng, LIU Ze-peng   

  1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450045, China
  • Received:2019-03-03 Revised:2019-07-24 Online:2020-03-25 Published:2019-07-26

摘要: 该文建立了由无缝试件确定混凝土和岩石断裂韧度的理论模型及其解析表达式。该模型考虑了混凝土骨料粒径与岩石颗粒尺寸的重要影响,仅需小尺寸无缝试件的峰值荷载,即可直接确定出无尺寸效应的混凝土与岩石的断裂韧度。进一步,进行了含不同裂缝长度的岩石试件的系列断裂试验,研究结果表明:基于该文模型由无缝试件确定的岩石断裂韧度,与采用含1 mm预制浅裂缝试件的确定结果相吻合,与基于回归分析方法由含不同长度预制裂缝试件确定的断裂韧度基本一致。同时,基于所提模型,对其他学者完成的岩石与混凝土无缝与含缝试件的试验成果进行了深入分析,验证了所提模型与方法的合理性及适用性。该文研究为由实验室小尺寸无缝试件确定混凝土与岩石无尺寸效应的断裂韧度提供了新思路。

关键词: 混凝土, 岩石, 无缝试件, 断裂韧度, 颗粒尺寸, 尺寸效应

Abstract: It presents a theoretical model and its associated analytical expression for determining the fracture toughness of concrete and rock using unnotched specimens. The important influence of the size of concrete aggregates and rock particles is fully considered in the proposed model, and only the peak load of small-scale unnotched specimens of concrete or rock is required. Size-independent fracture toughness can be directly determined. Furthermore, a series of fracture tests on the rock specimens with different notch lengths is conducted. Experimental results show that the fracture toughness of unnotched rock specimens obtained using the proposed model is consistent with that determined from the prefabricated specimens with a notch of 1 mm length. The fracture toughness of unnotched specimens is also consistent with that of the notched specimens based on the regression analysis method. The test results of the unnotched and notched rock and concrete specimens from other studies are further analyzed using the proposed model. The rationality and applicability of the proposed model and associated method are also verified. It provides new insights into the determination of the size-independent fracture toughness of concrete and rock by using small-scale unnotched specimens in a laboratory.

Key words: concrete, rock, unnotched specimen, fracture toughness, particle size, size effect


  • TU528
[1] DL/T 5332-2005, 水工混凝土断裂试验规程[S]. 北京:中国电力出版社, 2006. DL/T 5332-2005, Norm for fracture test of hydraulic concrete[S]. Beijng:China Electric Power Press, 2006. (in Chinese)
[2] RILEM TC-50 FMC (Draft Recommendation). Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams[J]. Materials and Structures, 1985, 18(6):285-290.
[3] Shah S P, Carpinteri A. Fracture mechanics test methods for concrete:Report of Technical Committee 89-FMT Fracture Mechanics of Concrete, Test Methods, RILEM[M]. London; New York:Chapman and Hall, 1991.
[4] ISRM Testing Commission. Suggested methods for determining the fracture toughness of rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(2):71-96.
[5] ISRM Testing Commission. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(1):57-64
[6] ASTM E399-90, Standard test method for plane-strain fracture toughness testing of metallic materials[S]. Philadelphia:American Society for Testing and Materials, 1990.
[7] ASTM E399-12e2, Standard test method for linear-elastic plane-strain fracture toughness testing of high strength metallic materials[S]. Philadelphia:American Society for Testing and Material, 2013.
[8] Li Qingbin, Guan Junfeng, Wu Zhimin, et al. Fracture behavior of site-casting dam concrete[J]. ACI Material Journal, 2015, 112(1):11-20.
[9] Li Qingbin, Guan Junfeng, Wu Zhimin, et al. Equivalent maturity for ambient temperature effect on fracture parameters of site-casting dam concrete[J]. Construction and Building Materials, 2016, 120(9):293-308.
[10] Guan Junfeng, Li Qingbin, Wu Zhimin, et al. Relationship between fracture parameters of site-casting and sieved concrete[J]. Magazine of Concrete Research, 2016, 68(1):43-54.
[11] Hoover C G, Bažant Z P, Vorel J, et al. Comprehensive concrete fracture tests:Description and results[J]. Engineering Fracture Mechanics, 2013, 114(12):92-103.
[12] Çağlar Y, Şener S. Size effect tests of different notch depth specimens with support rotation measurements[J]. Engineering Fracture Mechanics, 2016, 157(5):43-55.
[13] Jiang Y P, Guo W L, Shao X J. On the study of the effects of notch shape on the creep damage under cyclic loading[J]. International Journal of Fatigue, 2007, 29(5):836-842.
[14] Berto F, Fergani O. A review of the notch rounding approach under in plane mixed mode loading[J]. International Journal of Fatigue, 2017, 101(8):127-136.
[15] Ayatollahi M R, Torabi A R, Bahrami B. Comprehensive notch shape factors for V-notched Brazilian disk specimens loaded under mixed mode I/II from pure opening mode to pure closing mode[J]. Archive of Applied Mechanics, 2017, 87(2):299-313.
[16] Li J, Su CY, Lu L, et al. Investigation on fatigue crack growth behavior for commercial pure titanium at different crack tip plastic deformed levels[J]. Theoretical and Applied Fracture Mechanics, 2019, 100(4):1-13.
[17] Zaitsev Y V, Kovler K L. Notch sensitiv ity of concrete and size effect. Part I:Effect of specimen size and crack length by 3-point bending[J]. Cement and Concrete Research, 1985, 15(6):979-987.
[18] Zaitsev Y V, Kovler K L. Notch sensitivity of concrete and size effect. Part II:Stress state effect[J]. Cement & Concrete Research, 1986, 16(1):7-16.
[19] Guan Junfeng, Li Changming, Juan Wang, et al. Determination of fracture parameter and prediction of structural fracture using various concrete specimen types[J]. Theoretical and Applied Fracture Mechanics, 2019, 100(4):114-127.
[20] Lin Peng, Guan Junfeng, Peng Haoyang, et al. Horizontal cracking and crack repair analysis of a super high arch dam based on fracture toughness[J]. Engineering Failure Analysis, 2019, 97(3):72-90.
[21] 管俊峰, 胡晓智, 王玉锁, 等. 用边界效应理论考虑断裂韧性和拉伸强度对破坏的影响[J]. 水利学报, 2016, 47(10):1298-1306. Guan Junfeng, Hu Xiaozhi, Wang Yusuo, et al. Effect of fracture toughness and tensile strength on fracture based on boundary effect theory[J]. Journal of Hydraulic Engineering, 2016, 47(10):1298-1306. (in Chinese)
[22] 管俊峰, 王强, 胡晓智, 等. 考虑骨料尺寸的混凝土岩石边界效应断裂模型[J]. 工程力学, 2017, 34(12):22-30. Guan Junfeng, Wang Qiang, Hu Xiaozhi, et al. Boundary effect fracture model for concrete and granite considering aggregate size[J]. Engineering Mechanics, 2017, 34(12):22-30. (in Chinese)
[23] 管俊峰, 钱国双, 白卫峰, 等. 岩石材料真实断裂参数确定及断裂破坏预测方法[J]. 岩石力学与工程学报, 2018, 37(5):1146-1160. Guan Junfeng, Qian Guoshuang, Bai Weifeng, et al. Method for predicting fracture and determining true material parameters of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1146-1160. (in Chinese)
[24] 管俊峰, 胡晓智, 李庆斌, 等. 边界效应与尺寸效应模型的本质区别及相关设计应用[J]. 水利学报, 2017, 48(8):955-967. Guan Junfeng, Hu Xiaozhi, Li Qingbin, et al. Essential difference and design application of boundary effect model and size effect model[J]. Journal of Hydraulic Engineering, 2017, 48(8):955-967. (in Chinese)
[25] Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement Concrete Research, 1976, 6(6):773-782.
[26] Bažant Z P. Size effect in blunt fracture:Concrete, rock, metal[J]. Journal of Engineering Mechanics, 1984, 110(4):518-535.
[27] Jenq Y S, Shah S P. Two parameter fracture model for concrete[J]. Journal Engineering Mechanics-ASCE, 1985, 111(10):1227-1241.
[28] Karihaloo B L, Nallathambi P. Effective crack model for the determination of fracture toughness (Ke IC) of Concrete[J]. Engineering Fracture Mechanics, 1990, 35(4/5):637-645.
[29] Carpinteri A. Fractal nature of material microstructure and size effects on apparent mechanical properties[J]. Mechanics of Materials, 1994, 18(2):89-101.
[30] Xu S L, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II:Analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2):151-177.
[31] Hoover C G, Bažant Z P. Universal size-shape effect law based on comprehensive concrete fracture tests[J]. Journal Engineering Mechanics, 2014, 140(3):473-479.
[32] 管俊峰, 李庆斌, 吴智敏. 采用峰值荷载法确定全级配水工混凝土断裂参数[J]. 工程力学, 2014, 31(8):8-13. Guan Junfeng, Li Qingbin, Wu Zhimin. Determination of fully-grade hydraulic concrete fracture parameters by peak-load method[J]. Engineering Mechanics, 2014, 31(8):8-13. (in Chinese)
[33] Hoover C G, Bažant Z P. Comparison of Hu-Duan boundary effect model to size-shape effect law for quasi-brittle fracture based on new comprehensive fracture tests[J]. Journal Engineering Mechanics, 2014, 140(3):480-486.
[34] Hu Xiaozhi, Guan Junfeng, Wang Yusuo, et al. Comparison of boundary and size effect models based on new developments[J]. Engineering Fracture Mechanics, 2017, 175(4):146-167.
[35] 管俊峰, 姚贤华, 白卫峰, 等. 由小尺寸试件确定混凝土的断裂韧度与拉伸强度[J]. 工程力学, 2019, 36(1):70-79, 87. Guan Junfeng, Yao Xianhua, Bai Weifeng, et al. Determination of fracture toughness and tensile strength of concrete using small specimens[J]. Engineering Mechanics, 2019, 36(1):70-79, 87. (in Chinese)
[36] Hu Xiaozhi. Size effect on tensile softening relation[J]. Materials and Structures, 2011, 44(1):129-138.
[37] Hu X Z, Wittmann F. Size effect on toughness induced by crack close to free surface[J]. Engineering Fracture Mechanics, 2000, 65(2/3):209-221.
[38] Hu X Z. An asymptotic approach to size effect on fracture toughness and fracture energy of composites[J]. Engineering Fracture Mechanics, 2002, 69(5):555-564.
[39] Hu X Z, Duan K. Size effect and quasi-brittle fracture:the role of FPZ[J]. International Journal of Fracture, 2008, 154(1):3-14.
[40] Guan Junfeng, Hu X Z, Li Qingbin. In-depth analysis of notched 3-p-b concrete fracture[J]. Engineering Fracture Mechanics, 2016, 165(10):57-71.
[41] Guan Junfeng, Hu Xiaozhi, Xie Chaopeng, et al. Wedge-splitting tests for tensile strength and fracture toughness of concrete[J]. Theoretical and Applied Fracture Mechanics, 2018, 93(2):263-275.
[42] Guan Junfeng, Hu Xiaozhi, Yao Xianhua, et al. Fracture of 0.1 and 2 m long mortar beams under threepoint-bending[J]. Materials & Design, 2017, 133(11):363-375.
[43] Wang Y S, Hu X Z. Determination of strength and toughness of granite using notched three-point-bend samples[J]. Rock Mechanics and Rock Engineering, 2017, 50(1):1-12.
[1] 邓明科, 董志芳, 樊鑫淼, 梁兴文. 高延性混凝土面层加固受弯无筋砌体墙抗震性能试验研究[J]. 工程力学, 2020, 37(3): 46-55.
[2] 金浏, 杨旺贤, 余文轩, 杜修力. 基于细观模拟的轻骨料混凝土动态压缩破坏及尺寸效应分析[J]. 工程力学, 2020, 37(3): 56-65.
[3] 李磊, 王卓涵, 张艺欣, 郑山锁. 混凝土结构中考虑滑移效应的钢筋本构模型研究[J]. 工程力学, 2020, 37(3): 88-97.
[4] 杨勇, 魏博, 薛亦聪, 于云龙, 龚志超. 部分预制装配型钢混凝土柱火灾后偏压试验研究[J]. 工程力学, 2020, 37(3): 108-119.
[5] 王斌, 史庆轩, 蔡文哲, 彭一功, 李涵. RC带翼缘剪力墙变形能力计算方法研究[J]. 工程力学, 2020, 37(3): 167-175,216.
[6] 陈梦成, 方苇, 黄宏. 模拟酸雨腐蚀钢管混凝土构件静力性能研究[J]. 工程力学, 2020, 37(2): 34-43.
[7] 丁发兴, 吴霞, 向平, 余志武, 龚琛杰. 混凝土与各向同性岩石强度理论研究进展[J]. 工程力学, 2020, 37(2): 1-15.
[8] 徐龙河, 张格, 颜欣桐. 设置自复位支撑的钢筋混凝土框架结构抗震性能研究[J]. 工程力学, 2020, 37(2): 90-97.
[9] 韩建平, 李军. 考虑主余震序列影响的低延性钢筋混凝土框架易损性分析[J]. 工程力学, 2020, 37(2): 124-133.
[10] 沈凯仁, 陈先华, 周杰, 张含宇. 基于半解析有限元的水泥路面荷载响应分析[J]. 工程力学, 2020, 37(2): 134-144.
[11] 侯和涛, 臧增运, 鲁玉曦, 刘锦伟, 季可凡, 王彦明. 新型全装配钢-混凝土组合梁连接件推出试验研究[J]. 工程力学, 2020, 37(2): 201-210.
[12] 时旭东, 汪文强, 田佳伦. 不同强度等级混凝土遭受超低温冻融循环作用的受压强度试验研究[J]. 工程力学, 2020, 37(2): 211-220,240.
[13] 王丽萍, 罗文文, 刘思危, 张伟, 蒋利成, 杨仕建. 考虑梁轴向约束效应的RC梁柱节点受力机理及抗震性能试验研究[J]. 工程力学, 2020, 37(2): 159-167,191.
[14] 初明进, 刘继良, 侯建群, 任宝双. 带竖向接缝的空心模剪力墙受剪性能试验研究及承载力计算[J]. 工程力学, 2020, 37(1): 183-194.
[15] 俞鑫炉, 付应乾, 董新龙, 周风华, 宁建国, 徐纪鹏. 轴向钢筋增强混凝土一维应力层裂实验研究[J]. 工程力学, 2020, 37(1): 80-87.
Full text



[1] 许琪楼;王海. 板柱结构矩形弹性板弯曲精确解法[J]. 工程力学, 2006, 23(3): 76 -81 .
[2] 刘灵灵;张 婷;孔艳平;王令刚. 高温多轴非比例加载下缺口试样的疲劳寿命预测[J]. 工程力学, 2009, 26(8): 184 -188 .
[3] 蔡松柏;沈蒲生;胡柏学;邓继华. 基于场一致性的2D四边形单元的共旋坐标法[J]. 工程力学, 2009, 26(12): 31 -034 .
[4] 赵明华;张 玲;马缤辉;赵 衡. 考虑水平摩阻效应的土工格室加筋体受力分析[J]. 工程力学, 2010, 27(03): 38 -044 .
[5] 张永利;李 杰. 波浪作用下二维海床土体位移分布研究[J]. 工程力学, 2010, 27(6): 72 -076 .
[6] 乔 华;陈伟球;. 基于ARLEQUIN方法和XFEM的结构多尺度模拟[J]. 工程力学, 2010, 27(增刊I): 29 -033 .
[7] 简 斌;翁 健;金云飞. 直接基于位移的预应力混凝土框架结构抗震设计方法[J]. 工程力学, 2010, 27(7): 205 -211, .
[8] 富东慧;侯振德;秦庆华. 切槽对骨压电电压的影响[J]. 工程力学, 2011, 28(1): 233 -237 .
[9] 郭彦林;王永海. 两层通高区群柱面外稳定性能与设计方法研究[J]. 工程力学, 2011, 28(6): 52 -059 .
[10] 王 岚;常春清;邢永明. 胶粉改性沥青混合料弯曲蠕变试验研究[J]. 工程力学, 2011, 28(增刊I): 40 -043 .