工程力学 ›› 2020, Vol. 37 ›› Issue (2): 70-80.doi: 10.6052/j.issn.1000-4750.2019.02.0063

• 土木工程学科 • 上一篇    下一篇

冻融损伤低矮RC剪力墙数值模拟方法

郑山锁, 荣先亮, 张艺欣, 董立国   

  1. 西安建筑科技大学土木工程学院, 陕西, 西安 710055
  • 收稿日期:2019-02-21 修回日期:2019-08-09 出版日期:2020-02-25 发布日期:2019-08-23
  • 通讯作者: 荣先亮(1993-),男,安徽人,硕士生,主要从事结构抗震研究(E-mail:rxl021@126.com) E-mail:rxl021@126.com)
  • 作者简介:郑山锁(1960-),男,陕西人,教授,工学博士,主要从事结构抗震研究(E-mail:zhengshansuo@263.net)张艺欣(1991-),女,河南人,博士生,主要从事结构抗震研究(E-mail:zyx19910619@126.com)董立国(1990-),男,山西人,博士生,主要从事结构抗震研究(E-mail:dlg_15@163.com)
  • 基金资助:
    国家科技支撑计划项目(2013BAJ08B03);国家自然科学基金计划项目(51678475);陕西省重点研发计划项目(2017ZDXM-SF-093);陕西省教育厅产业化项目(18JC020);西安市科技计划项目(19XC009)

NUMERICAL SIMULATION OF SQUAT RC SHEAR WALLS WITH FREEZE-THAW DAMAGE

ZHENG Shan-suo, RONG Xian-liang, ZHANG Yi-xin, DONG Li-guo   

  1. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
  • Received:2019-02-21 Revised:2019-08-09 Online:2020-02-25 Published:2019-08-23

摘要: 出于冻融环境下RC剪力墙结构抗震性能评估的需要,通过理论分析与试验回归相结合的方法对8榀冻融损伤低矮RC剪力墙拟静力试验结果进行分析,得到了综合考虑冻融损伤参数和轴压比影响的低矮RC剪力墙剪切恢复力模型,进而提出了考虑不均匀冻融损伤分布组合剪切效应的低矮RC剪力墙数值模拟方法。通过模拟结果与试验结果对比发现:采用该模拟方法得到各试件的滞回曲线、骨架曲线以及最终破坏时的累积耗能均与试验结果符合较好,表明该文所提出的数值模拟方法可较为准确地反映冻融损伤低矮RC剪力墙的力学性能和抗震性能,可用于严寒地区在役RC剪力墙结构的抗震性能评估。

关键词: 剪切恢复力模型, 数值模拟方法, 冻融损伤, 低矮RC剪力墙, 纤维模型

Abstract: This study evaluated the seismic performance of RC shear walls under freezing and thawing environment. The results of the quasi-static tests of eight freeze-thaw damage squat RC shear walls were analyzed by using theoretical analysis and experimental regression. A shear hysteresis model of a squat RC shear wall was proposed considering the degree of freeze-thaw damage and the axial load ratio. Subsequently, a numerical simulation method of the squat RC shear wall was put forward considering the combined shear effect and uneven freeze-thaw damage. Comparing the simulation results with the experimental results, it is found that the hysteresis curve, the skeleton curve, and the cumulative energy dissipation were in good agreement with the experimental results, which indicated that the numerical simulation method proposed in this paper can accurately reflect the mechanical properties and seismic performance of squat RC shear walls with freeze-thaw damage, and can be used for seismic performance evaluation of in-service RC shear walls in frost action regions.

Key words: shear hysteresis model, numerical simulation method, freeze-thaw damage, squat RC shear wall, fiber model

中图分类号: 

  • TU375.4
[1] Hidalgo P A, Ledezma C A, Jordan R M. Seismic behavior of squat reinforced concrete shear walls[J]. Earthquake Spectra, 2002, 18(2):287-308.
[2] 纪晓东, 程小卫, 徐梦超. 小剪跨比钢筋混凝土墙拉剪性能试验研究[J]. 工程力学, 2018, 35(增刊1):53-61. Ji Xiaodong, Cheng Xiaowei, Xu Mengchao. Experimental study on tension-shear behavior of lowaspect-ratio RC walls[J]. Engineering Mechanics, 2018, 35(Suppl 1):53-61. (in Chinese)
[3] 白国良, 秦朝刚, 徐亚洲, 等. 装配整体式与现浇剪力墙结构抗震性能对比分析[J]. 工程力学, 2019, 36(2):39-47. Bai Guoliang, Qin Chaogang, Xu Yazhou, et al. Contrastive analysis on aseismic performances between momolithic precast concrete and cast-in-place shear wall structure.[J]. Engineering Mechanics, 2019, 36(2):39-47. (in Chinese)
[4] 邓明科, 寇佳亮, 梁兴文, 等. 延性纤维混凝土剪力墙抗震性能试验研究[J]. 工程力学, 2014, 31(7):170-177. (in Chinese) Deng Mingke, Kou Jialiang, Liang Xingwen, et al. Experimental investigation on aseismic behavior of dutile fiber reinforced concrete shear walls[J]. Engineering Mechanics, 2014, 31(7):170-177.
[5] 杨红, 张睿, 臧登科, 等. 纤维模型中非线性剪切效应的模拟方法及校核[J]. 工程科学与技术, 2011, 43(1):8-16. Yang Hong, Zhang Rui, Zang Dengke, et al. Simulating method and checking of nonlinear shear effect in fiber model[J]. Engineering Science and Technology, 2011, 43(1):8-16. (in Chinese)
[6] Vásquez, Jorge A, De l L J C, Hube, Matías A. A regularized fiber element model for reinforced concrete shear walls[J]. Earthquake Engineering & Structural Dynamics, 201645(13):2063-2083.
[7] 臧登科. 纤维模型中考虑剪切效应的RC结构非线性特征研究[D]. 重庆:重庆大学, 2008. Zang Dengke. Study on nonlinear characteristics of rcstructures considering shear effect in fiber model[D]. Chongqing:Chongqing University, 2008. (in Chinese)
[8] 解琳琳. 基于OpenSEES的RC构件抗震性能数值模拟及验证[D]. 安徽:合肥工业大学, 2012. Xie Linlin. Numerical simulation and verification of seismic performance of RC members based on OpenSEES[D]. Anhui:Hefei University of Technology, 2012. (in Chinese)
[9] Hanjari K Z, Utgenannt P, and Lundgren K. Experimental study of the material and bond properties of frostdamaged concrete[J]. Cement and Concrete Research. 2011, 41(3):244-254.
[10] Duan A, Jin W L, Qian J R. Effect of freeze-thaw cycles on the stress-strain curves of unconfined and confined concrete[J]. Materials & Structures, 2011, 44(7):1309-1324.
[11] 冀晓东. 冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D]. 辽宁:大连理工大学, 2007. Ji Xiaodong. Experimental study and theoretical analysis on the mechanical performance of concrete and bond behaviour between concrete and stall bar after freezing and thawing[D]. Liaoning:Dalian University of Technology, 2007. (in Chinese)
[12] 郑山锁, 荣先亮, 张艺欣, 等. 冻融损伤钢筋混凝土剪力墙恢复力模型研究[J]. 华中科技大学学报(自然科学版), 2019, 47(6):109-114. Zheng Shansuo, Rong Xianliang, Zhang Yixin, et al. Restoring force model of freeze-thaw injury reinforced concrete shear walls[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) 2019, 47(6):109-114. (in Chinese)
[13] 郑山锁, 董晋琦, 荣先亮, 等. 不同轴压比冻融RC剪力墙抗震性能试验[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(7):690-698. Zheng Shansuo, Dong Jinqi, Rong Xianliang, et al. Experiment on the seismic behavior of freeze-thaw RC shear walls with different axial compression rations[J]. Journal of Tianjin University (Science and Technology) 2019, 52(7):690-698. (in Chinese)
[14] Yang W, Zheng S S, Zhang D Y, et al. Seismic behaviors of squat reinforced concrete shear walls under freezethaw cycles:A pilot experimental study[J]. Engineering Structures, 2016, 124:49-63.
[15] 郑山锁, 甘传磊, 秦卿, 等. 冻融循环后一字形短肢剪力墙抗震性能试验研究[J]. 工程力学, 2016, 33(12):94-103. Zheng Shansuo, Gan Chuanlei, Qin Qing, et al. Experimental study on the seismic behavior of short-pier shear walls subjected to freeze-thaw cycles[J]. Engineering Mechanics, 2016, 33(12):94-103. (in Chinese)
[16] JGJ3-2002, 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2003. JGJ3-2002, Technical specification for concrete structures of tall buildings[S]. Beijing:China Architecture & Building Press, 2003. (in Chinese)
[17] GB 50010-2002, 混凝土结构设计规范[S]. 北京:中国建筑工业出版社, 2003. GB 50010-2002, Code for design of concrete structures[S]. Beijing:China Architecture and Building Press, 2003. (in Chinese)
[18] 姚谦峰, 常鹏. 工程结构抗震分析[M]. 北京:北京交通大学出版社, 2012:180-183. Yao Qianfeng, Chang Peng. Seismic analysis of engineering structure[M]. Beijing:Beijing Jiaotong University Press, 2012:180-183. (in Chinese)
[19] Hirosawa M. Past experimental results on reinforced concrete shear walls and analysis on them[R]. Tokyo, Japan:No 6 Building Research Institute, Ministry of Construction, 1975.
[20] Park Y J, Ang H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4):722-739.
[21] Cevdet Kerem Gulec. Performance-based assessment and design of squat reinforced concrete shear wall[D]. Buffalo:The State University of New York, 2009.
[22] Petersen L. Influence of material deterioration processes on mechanical behavior of reinforced concrete structures[D]. Germany:University of Hannover, 2004.
[23] Petersen L, Lohaus L, Polak M A. Influence of freezing-and-thawing damage on behavior of reinforced concrete elements[J]. ACI Materials Journal, 2007, 104(4):369-378.
[24] 秦卿. 近海大气环境下多龄期RC剪力墙结构抗震性能试验研究及地震易损性分析[D]. 陕西:西安建筑科技大学, 2017. Qin Qing. Experimental study on seismic behavior of multi-age RC shear wall structures in offshore atmospheric environment and seismic vulnerability analysis[D]. Shaanxi:Xi'an University of Architecture and Technology, 2017. (in Chinese)
[25] Qin Qing, Zheng Shansuo, Li Lei, et al. Experimental study and numerical simulation of seismic behavior for RC columns subjected to freeze-thaw cycles[J]. Advances in Materials Science and Engineering, 2017, 2017:1-13.
[26] Setzer M J, Heine P, Kasparek S, et al. Test methods of frost resistance of concrete:CIF-test:capillary suction, internal damage and freeze thaw test-reference method and alternative methods A and B[J]. Materials and Structures, 2004, 37(274):743-753.
[27] 张艺欣, 郑山锁, 裴培, 等. 钢筋混凝土柱冻融损伤模型研究[J]. 工程力学, 2019, 36(2):78-86. Zhang Yixin, Zheng Shansuo, Pei Pei, et al. Research on the modeling method of reinferced concrete column subjected to freeze-thaw damage[J]. Engineering Mechanics, 2019, 36(2):78-86. (in Chinese)
[1] 郑山锁, 周炎, 李强强, 龙立, 董立国, 贺金川. 氯离子侵蚀下低矮RC剪力墙抗震性能试验研究[J]. 工程力学, 2019, 36(12): 69-78.
[2] 陶慕轩, 丁然, 潘文豪, 许立言, 周萌, 聂建国. 传统纤维模型的一些新发展[J]. 工程力学, 2018, 35(3): 1-21.
[3] 王斌, 郑山锁, 汪锋, 王帆. 考虑冻融损伤的钢筋混凝土框架节点恢复力模型研究[J]. 工程力学, 2017, 34(5): 105-115.
[4] 刁梦竹, 李易, 陆新征, 闫维明. 钢筋混凝土楼板连续倒塌的一种简化模拟方法[J]. 工程力学, 2016, 33(增刊): 72-78.
[5] 张耀庭, 赵璧归, 李瑞鸽, 杜晓菊. HRB400钢筋单调拉伸及低周疲劳性能试验研究[J]. 工程力学, 2016, 33(4): 121-129.
[6] 叶昆, 张子翔, 朱宏平. 近场地震竖向分量对LRB基础隔震结构地震响应影响分析[J]. 工程力学, 2016, 33(4): 49-57.
[7] 陶慕轩, 聂建国. 组合构件纤维模型的建模策略-单元划分和截面离散[J]. 工程力学, 2016, 33(2): 96-103.
[8] 李忠献, 何振锋, 师燕超, 丁阳. 爆炸荷载下钢筋混凝土柱动态响应分析的宏观模型[J]. 工程力学, 2015, 32(9): 76-83.
[9] 唐广青, 肖岩, 张倚天. 方钢管混凝土轴压短柱承载力与全曲线综述研究[J]. 工程力学, 2015, 32(8): 103-111.
[10] 卢亦焱, 薛继锋, 龚田牛, 张学朋. 钢管自密实混凝土加固钢筋混凝土圆形短柱偏压性能研究[J]. 工程力学, 2015, 32(8): 164-171.
[11] 王文达,王景玄,周小燕. 基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析[J]. 工程力学, 2014, 31(9): 142-151.
[12] 买买提明·艾尼,热合买提江·依明. 现代数值模拟方法与工程实际应用[J]. 工程力学, 2014, 31(4): 11-18.
[13] 黄盛楠,马千里,叶列平. 罕遇地震下RC框架结构最大弹塑性层间位移的实用计算方法[J]. 工程力学, 2014, 31(4): 69-75,101.
[14] 陈永盛,吴斌. 基于截面轴力与弯矩屈服面本构积分的梁-柱单元[J]. 工程力学, 2014, 31(4): 203-209.
[15] 解琳琳, 叶献国, 种迅, 蒋庆. OpenSEES中混凝土框架结构节点模型关键问题的研究与验证[J]. 工程力学, 2014, 31(3): 116-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日