工程力学 ›› 2019, Vol. 36 ›› Issue (8): 226-234,247.doi: 10.6052/j.issn.1000-4750.2019.02.0057

• 土木工程学科 • 上一篇    下一篇

适用于区域RC框架结构隔震韧性提升的简化模型

卢嘉茗1,2, 解琳琳1,2, 李爱群1,2,3, 曾德民1,2, 杨参天1,2,3, 刘谦敏4   

  1. 1. 北京建筑大学土木与交通工程学院, 北京 100044;
    2. 北京建筑大学"工程结构与新材料"北京市高等学校工程研究中心, 北京 100044;
    3. 东南大学土木工程学院, 南京 210096;
    4. 北京市建筑设计研究院有限公司, 北京 100045
  • 收稿日期:2019-02-23 修回日期:2019-05-08 出版日期:2019-08-25 发布日期:2019-08-10
  • 通讯作者: 解琳琳(1986-),男,江苏南通人,讲师,博士,主要从事高层和超高层抗震设计研究(E-mail:xielinlin@bucea.edu.cn). E-mail:xielinlin@bucea.edu.cn
  • 作者简介:卢嘉茗(1994-),女,广东东莞人,硕士生,主要从事医疗建筑抗震性能研究(E-mail:2108521317064@stu.bucea.edu.cn);李爱群(1962-),男,湖南耒阳人,教授,博士,博导,主要从事工程防灾减灾研究(E-mail:liaiqun@bucea.edu.cn);曾德民(1970-),男,吉林公主岭人,研究员,博士,主要从事结构隔震减震技术及城市防灾减灾研究(E-mail:zengdemin@vip.163.com);杨参天(1993-),男,山西晋城人,博士生,主要从事高层隔震结构研究(E-mail:yangcantian@outlook.com);刘谦敏(1986-),女,北京人,高工,硕士,主要从事结构减隔震设计研究(E-mail:liuqm_mm@sina.com).
  • 基金资助:
    北京市自然科学基金项目(8192008);北京未来城市设计高精尖创新中心项目(UDC2016030200);长江学者和创新团队发展计划资助项目(IRT_17R06);北京建筑大学校级教改项目(Y1832);北京建筑大学研究生创新项目(PG2018025,PG2018030)

A SIMPLIFIED MODEL FOR SEISMIC RESILIENCE IMPROVEMENT OF REGIONAL RC FRAME STRUCTURES USING SEISMIC ISOLATION

LU Jia-ming1,2, XIE Lin-lin1,2, LI Ai-qun1,2,3, ZENG De-min1,2, YANG Can-tian1,2,3, LIU Qian-min4   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    2. Beijing Higher Institution Engineering Research Center of Civil Engineering Structure and Renewable Material, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
    3. School of Civil Engineering, Southeast University, Nanjing 210096, China;
    4. China Beijing Institute of Architectural Design, Beijing 100045, China
  • Received:2019-02-23 Revised:2019-05-08 Online:2019-08-25 Published:2019-08-10

摘要: 近年来,区域建筑地震韧性提升已逐渐成为国际防震减灾领域的研究热点。该文以典型区域建筑RC框架结构为例,综合考虑区域计算效率和精度,以关键设计指标把握能力、关键结构响应预测能力和韧性水准评价结果为核心目标,研究了适用于该类结构隔震韧性提升的简化模型。基于基本案例,首先评价了广泛使用的基于剪切梁的组合简化模型的精度,结果表明:该模型无法把握关键设计指标底部剪力比,更重要的是无法预测影响韧性水准的关键结构响应最大楼面绝对加速度。鉴于此,该文建议了一种基于铁木辛柯梁的组合简化模型,可准确把握上述关键设计指标和结构响应。以一栋既有RC框架结构为例,实现了基于该简化模型的隔震韧性提升,并用于指导该结构的隔震韧性提升实际工程设计,结果表明:该模型可较好把握关键设计指标和预测关键结构响应,且韧性评价结果与精细模型评价结果相对误差小于4.5%,而基于剪切梁的组合简化模型预测的修复费用和工时误差分别高达177%和31.5%,表明该文建议的简化模型可服务于区域RC框架结构的隔震韧性提升。

关键词: RC框架结构, 韧性提升, 隔震, 简化模型, 底部剪力比, 楼面绝对加速度

Abstract: Seismic resilience of structures has become a critical issue in earthquake engineering worldwide, recently. RC frame structure, as a typical structure, is selected as the research object here. Considering the computational efficiency and accuracy, a simplified model for it was suggested and investigated with emphasis put on the critical requirements of seismic resilience of RC frames with seismic isolation, including the capacities of predicting critical design indices, seismic responses and resilient performance. Employing a basic case, the prediction accuracy of the widely-used hybrid simplified model based on shear beam (referred to as "HSS model" hereafter) was evaluated firstly. The results indicate that such model cannot predict the critical design index (i.e. base shear ratio) well. Furthermore, it is not capable of predicting the maximum absolute floor acceleration, which is the critical seismic response affecting seismic resilience. In view of these, a hybrid simplified model based on Timoshenko beam (referred to as "HST model" hereafter) was recommended and validated to be capable of predicting the abovementioned critical design index and seismic response. Based on this model, the seismic resilience improvement using seismic isolation was analyzed for an existing RC frame structure. Subsequently, the corresponding results were used to guide the detailed design of seismic isolation scheme. The results indicate that HST model can well predict the critical design index and seismic response. Furthermore, the relative errors of resilient performances predicted by the refined model and HST model are less than 4.5%. In contrast, relative errors are as large as 177% and 31.5% for the repair cost and repair time predicted by HSS model, respectively. The research outcome proves that the recommended model (i.e. HST model) can be used for analyzing the seismic resilience improvement based on seismic isolation.

Key words: RC frame structure, seismic resilience improvement, seismic isolation, simplified model, base shear ratio, absolute floor acceleration

中图分类号: 

  • P315.9
[1] 肖从真. 汶川地震震害调查与思考[J]. 建筑结构, 2008, 38(7):21-24. Xiao Congzhen. Investigation and reflection on Wenchuan Earthquake[J]. Building Structure, 2008, 38(7):21-24. (in Chinese)
[2] 田源, 李梦珂, 解琳琳, 等. 采用新一代性能化设计方法对比典型中美高层建筑地震损失[J]. 建筑结构, 2018, 48(4):26-33. Tian Yuan, Li Mengke, Xie Linlin, et al. Seismic loss comparison of typical high-rise buildings in China and USA using the new-generation performance-based design method[J]. Building Structure, 2018, 48(4):26-33. (in Chinese)
[3] 曾翔, 刘诗璇, 许镇, 等. 基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J]. 工程力学, 2016, 33(增刊1):113-118. Zeng Xiang, Liu Shixuan, Xu Zhen, et al. Earthquake loss prediction for campus buildings based on FEMA-P58 method:A case study[J]. Engineering Mechanics, 2016, 33(Suppl 1):113-118. (in Chinese)
[4] 罗文文, 李英民, 韩军. 基于全概率PBEE方法的RC框架结构地震损失分析[J]. 工程力学, 2016, 33(9):186-194. Luo Wenwen, Li Yingmin, Han Jun. Earthquake loss estimation for RC frames based on PEER-PBEE methodology[J]. Engineering Mechanics, 2016, 33(9):186-194. (in Chinese)
[5] 朱健, 赵均海, 谭平, 等. 基于CFRP加固的钢混排架厂房全寿命周期地震成本研究[J]. 工程力学, 2019, 36(2):141-153. Zhu Jian, Zhao Junhai, Tan Ping, et al. Seismic life-cycle loss estimation of CFRP reinforced industrial buildings[J]. Engineering Mechanics, 2019, 36(2):141-153. (in Chinese)
[6] 羡丽娜, 何政. 不同CMR的RC框架结构地震损失分析[J]. 工程力学, 2014, 31(12):155-163. Xian Lina, He Zheng. Earthquake loss analysis of RC frame structures with different collapse margin ratios[J]. Engineering Mechanics, 2014, 31(12):155-163. (in Chinese)
[7] 周云, 吴从晓, 张崇凌, 等. 芦山县人民医院门诊综合楼隔震结构分析与设计[J]. 建筑结构, 2013, 43(24):23-27. Zhou Yun, Wu Congxiao, Zhang Chongling, et al. Analysis and design of seismic isolation structure in outpatient building of the Lushan County People's Hospital[J]. Building Structure, 2013, 43(24):23-27. (in Chinese)
[8] Nagarajaiah S, Sun X H. Response of base-isolated USC hospital building in Northridge earthquake[J]. Journal of Structural Engineering, 2000, 126(10):1177-1186.
[9] Mahin S. 近期地震教训:建立更多可恢复性城市[J]. 建筑结构, 2012, 42(增刊1):1-8. Mahin S. Lessons from recent earthquakes:the need for more resilient cities[J]. Building Structure, 2012, 42(Suppl 1):1-8. (in Chinese)
[10] 刘彦辉, 谭平, 周福霖, 等. 高层框架-剪力墙隔震结构地震响应研究[J]. 工程力学, 2015, 32(3):134-139, 224. Liu Yanhui, Tan Ping, Zhou Fulin, et al. Study of seismic response in isolated high-rise frame-shear wall structures during earthquakes[J]. Engineering Mechanics, 2015, 32(3):134-139, 224. (in Chinese)
[11] Dong Y, Frangopol D M. Performance-based seismic assessment of conventional and base-isolated steel buildings including environmental impact and resilience[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(5):739-756.
[12] Parvini Sani H, Gholhaki M, Banazadeh M. Simplified direct loss measure for seismic isolated steel moment-resisting structures[J]. Journal of Constructional Steel Research, 2018, 147:313-323.
[13] 田洁, 张俊发, 刘云贺, 等. 铅芯橡胶支座基础隔震体系参数优化配置研究[J]. 世界地震工程, 2003, 19(1):158-163. Tian Jie, Zhang Junfa, Liu Yunhe, et al. Research on optimum parameters of base-isolated buildings with lead laminated rubber bearings[J]. World Earthquake Engineering, 2003, 19(1):158-163. (in Chinese)
[14] 刘平, 李琪. 基底隔震建筑的剪切梁动力模型[J]. 工程力学, 1998, 15(3):90-97. Liu Ping, Li Qi. Shearing beam dynamic model for base-isolated buildings[J]. Engineering Mechanics, 1998, 15(3):90-97. (in Chinese)
[15] 王焕定, 付伟庆, 刘文光, 等. 规则隔震结构等效简化模型的研究[J]. 工程力学, 2006, 23(8):138-143. Wang Huanding, Fu Weiqing, Liu Wenguang, et al. Research equivalent simplified model of regular shock-insulation building[J]. Engineering Mechanics, 2006, 23(8):138-143(in Chinese)
[16] FEMA. Multi-hazard loss estimation methodology Hazus-MH 2.1 advanced engineering building module (AEBM) technical and User's manual[R]. Washington, DC, USA.:Federal Emergency Management Agency, 2012.
[17] Lu Xinzheng, Tian Yuan, Wang Gang, et al. A numerical coupling scheme for nonlinear time-history analysis of buildings on a regional scale considering site-city interaction effects[J]. Earthquake Engineering & Structural Dynamics, 2018, 47(13):2708-2725.
[18] Lu Xinzheng, Zeng Xiang, Xu Zhen, et al. Improving the accuracy of near-real-time seismic loss estimation using post-earthquake remote sensing images[J]. Earthquake Spectra, 2018, 34(3):1219-1245.
[19] Lu Xinzheng, Tian Yuan, Guan Hong, et al. Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis[J]. Bulletin of Earthquake Engineering, 2017, 15(11):4791-4820.
[20] Xu Zhen, Lu Xinzheng, Law Kincho H. A computational framework for regional seismic simulation of buildings with multiple fidelity models[J]. Advances in Engineering Software, 2016, 99:100-110.
[21] Xiong Chen, Lu Xinzheng, Lin Xuchuan, et al. Parameter determination and damage assessment for THA-based regional seismic damage prediction of multi-story buildings[J]. Journal of Earthquake Engineering, 2017, 21(3):461-485.
[22] Zeng X, Lu X Z, Yang T Y, et al. Application of the FEMA-P58 methodology for regional earthquake loss prediction[J]. Natural Hazards, 2016, 83(1):177-192.
[23] Xu Zhen, Lu Xinzheng, Guan Hong, et al. High-speed visualization of time-varying data in large-scale structural dynamic analyses with a GPU[J]. Automation in Construction, 2014, 42:90-99.
[24] 熊琛. 基于时程分析和三维场景可视化的区域建筑震害模拟研究[D]. 北京:清华大学, 2016. Xiong Chen. Study on the regional building seismic damage simulation based on time-history analysis and 3D scene visualization[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[25] 中华人民共和国住房和城乡建设部. 建筑隔震设计规范(征求意见稿)[EB]. http://www.mohurd.gov.cn/zqyj/201801/t20180112_234778.html, 2018-1-11. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code of design for seismic isolated buildings (draft for comment)[EB]. http://www.mohurd.gov.cn/zqyj/201801/t20180112_234778.html, 2018-1-11.
[26] Miranda E, Taghavi S. Approximate floor acceleration demands in multistory buildings. I:formulation[J]. Journal of Structural Engineering-ASCE, 2005, 131(2):203-211.
[27] 王维, 包霞, 李爱群. 基于性能的既有框架结构隔震加固设计方法[J]. 建筑科学, 2017, 33(7):99-103. Wang Wei, Bao Xia, Li Aiqun. Performance based isolation retrofitting design of existing frame structures[J]. Building Science, 2017, 33(7):99-103. (in Chinese)
[28] 吴垠龙. 映秀幼儿园基础隔震结构设计[J]. 建筑结构, 2013, 43(增刊1):1233-1236. Wu Yinlong. Yingxiu kindergarten base isolation structure design[J]. Building Structure, 2013, 43(Suppl 1):1233-1236. (in Chinese)
[29] 陈晓彬, 潘文, 兰香, 等. 高烈度区澄江化石地博物馆减隔震结构设计与分析[J]. 建筑结构, 2017, 47(8):41-46. Chen Xiaobin, Pan Wen, Lan Xiang, et al. Design and analysis of seismic isolation and energy-dissipation structure of Chengjiang Fossil Museum in high seismic fortification intensity site[J]. Building Structure, 2017, 47(8):41-46. (in Chinese)
[30] 中华人民共和国住房和城乡建设部. 建筑抗震韧性评价标准(征求意见稿)[EB]. http://www.mohurd.gov.cn/zqyj/201809/t20180921_237686.html, 2018-9-20. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for seismic resilience assessment of buildings (draft for comment)[EB]. http://www.mohurd.gov.cn/zqyj/201809/t20180921_237686.html, 2018-9-20.
[31] FEMA. Seismic performance assessment of buildings, volume 1-methodology:FEMA P-58-1[S]. Washington, DC, USA.:Federal Emergency Management Agency, 2012.
[32] FEMA. Seismic performance assessment of buildings, volume 2-implementation guide:FEMA P-58-2[S]. Washington, DC, USA.:Federal Emergency Management Agency, 2012.
[1] 王维超, 刘泽, 于桂兰. 周期十字空沟地震表面波屏障[J]. 工程力学, 2019, 36(S1): 144-148.
[2] 刘岩钊, 尹首浮, 于桂兰. 周期格栅式表面波屏障的设计与性能研究[J]. 工程力学, 2019, 36(S1): 324-328.
[3] 周颖, 吴浩, 顾安琪. 地震工程:从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1-12.
[4] 杜永峰, 时晨. 多向动力耦合激励下隔震结构连续倒塌性能分析[J]. 工程力学, 2019, 36(6): 248-256.
[5] 郑文智, 王浩, 沈惠军. 强震下隔震连续梁桥地震响应的温度效应研究[J]. 工程力学, 2019, 36(4): 188-195,205.
[6] 杜轲, 滕楠, 孙景江, 燕登, 骆欢. 基于共旋坐标和力插值纤维单元的RC框架结构连续倒塌构造方法[J]. 工程力学, 2019, 36(3): 95-104.
[7] 洪越, 唐贞云, 林树潮, 李振宝. 一种新型变曲率摩擦摆力学性能的试验研究[J]. 工程力学, 2018, 35(S1): 113-119.
[8] 李建波, 梅润雨, 于梦, 林皋. 具有隔震构造的核电站安全壳在强烈地震和大型商用飞机撞击下的振动响应分析[J]. 工程力学, 2018, 35(9): 81-88.
[9] 何文福, 许浩, 魏陆顺, 冯祎鑫, 杨巧荣. 多级性态隔震体系试验研究和结构动力响应分析[J]. 工程力学, 2018, 35(9): 97-106.
[10] 杨参天, 解琳琳, 李爱群, 曾德民, 刘立德. 适用于高层隔震结构的地震动强度指标研究[J]. 工程力学, 2018, 35(8): 21-29.
[11] 李潇, 方秦, 孔祥振, 吴昊. 砂浆材料SHPB实验及惯性效应的数值模拟研究[J]. 工程力学, 2018, 35(7): 187-193.
[12] 李万润, 王辉, 孙玉萍, 杜永峰, 王雪平, 吴忠铁. 考虑隔震支座特性的隔震结构多尺度模拟与试验验证[J]. 工程力学, 2018, 35(6): 115-122,131.
[13] 吴宜峰, 王浩, 李爱群, 杨凡. 新型多功能隔震支座力学性能的数值模拟与实验验证[J]. 工程力学, 2018, 35(2): 195-202.
[14] 贾少敏, 王子琦, 赵雷, 马海涛. 多点激励下隔震桥梁非线性随机振动的时域显式迭代模拟法[J]. 工程力学, 2018, 35(12): 116-123.
[15] 党育, 张辙洵, 李涌涛, 谢鹏飞. 基于概率统计方法的隔震结构可靠度[J]. 工程力学, 2018, 35(11): 146-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日