工程力学 ›› 2020, Vol. 37 ›› Issue (1): 239-247.doi: 10.6052/j.issn.1000-4750.2019.02.0050

• 其他工程学科 • 上一篇    下一篇

基于数字图像相关技术的砂土全场变形测量及其DEM数值模拟

王鹏鹏1,2, 郭晓霞1,2, 桑勇3,4, 邵龙潭1,2, 陈之祥1,2, 赵博雅1,2   

  1. 1. 大连理工大学工业装备结构分析国家重点实验室, 辽宁, 大连 116024;
    2. 大连理工大学工程力学系, 辽宁, 大连 116024;
    3. 大连理工大学精密与特种加工教育部重点实验室, 辽宁, 大连 116024;
    4. 大连理工大学机械工程学院, 辽宁, 大连 116024
  • 收稿日期:2019-02-21 修回日期:2019-05-22 出版日期:2020-01-29 发布日期:2019-06-06
  • 通讯作者: 郭晓霞(1978-),女,辽宁大连人,高工,博士,主要从事岩土力学方面的研究工作(E-mail:hanyuer@dlut.edu.cn). E-mail:hanyuer@dlut.edu.cn
  • 作者简介:王鹏鹏(1989-),男,河南洛阳人,博士生,主要从事图像测量和工程测试等方面的研究工作(E-mail:wpeng121@126.com);桑勇(1979-),男,山东泰安人,副教授,博士,硕导,主要从事电液伺服控制方面的研究工作(E-mail:sang110@163.com);邵龙潭(1963-),男,吉林梨树人,教授,博士,博导,主要从事土力学理论和技术方面的研究工作(E-mail:shaolt@dlut.edu.cn);陈之祥(1990-),男,河南濮阳人,博士生,主要从事环境岩土工程方面的研究工作(E-mail:chen_zhixiang@126.com);赵博雅(1985-),男,辽宁辽阳人,博士生,主要从事岩土与环境力学方面的研究工作(E-mail:287370072@qq.com).
  • 基金资助:
    国家自然科学基金项目(51309047);国家重点实验室自主研究课题经费项目(S18406)

FULL-FIELD DEFORMATION MEASUREMENT OF SAND USING THE DIGITAL IMAGE CORRELATION TECHNIQUE AND NUMERICAL SIMULATION USING THE DISCRETE ELEMENT METHOD

WANG Peng-peng1,2, GUO Xiao-xia1,2, SANG Yong3,4, SHAO Long-tan1,2, CHEN Zhi-xiang1,2, ZHAO Bo-ya1,2   

  1. 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024, China;
    2. Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116024, China;
    3. Key Laboratory for Precision and Non-Traditional Machining Technology, Ministry of Education, Dalian University of Technology, Dalian, Liaoning 116024, China;
    4. School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2019-02-21 Revised:2019-05-22 Online:2020-01-29 Published:2019-06-06

摘要: 岩土材料在力学性能上表现出各向异性与非线性特征,不同土体的受力变形规律也不相同。为了更真实地反映平面应变状态下土的受力变形特性,研制了一种新型的平面应变加载设备,该设备通过对试样的侧向(围压方向上)施加柔性荷载来降低常规平面应变试验中刚性加载所造成的边界约束影响。同时,搭建了能够得到表面变形识别的数字图像采集系统。在此基础上,利用研制的平面应变设备结合二维数字图像相关技术(2D-DIC)根据获得试验过程中的全场变形来分析福建标准砂在不同围压下的变形特性。另外,通过数字图像相关法得到的平面应变试验结果来确定砂土基于抗滚动摩擦模型的细观参数,并对试验过程进行了离散元分析。结果表明:基于数字图像相关测量技术的新型平面应变试验设备可以准确获得福建标准砂的局部变形规律和变形过程的非线性行为,由此确定的砂土细观参数也能够较为真实地反映试验材料的应力-应变关系。

关键词: 岩土力学, 全场变形测量, 数字图像相关技术, 平面应变试验, 渐进破坏, 离散单元法

Abstract: Geotechnical materials are characterized of anisotropy and nonlinearity. Different composition leads to different deformation in soil. In order to measure the actual deformation of soil in the plane strain condition, a new plane strain testing apparatus was used to apply flexible pressure to the lateral sides of specimens. Unlike rigid loading, this loading method reduces the influence of boundary constraints. At the same time, a digital image measuring system was combined with this apparatus to obtain the surface deformation of specimens. The 2D digital image correlation (2D-DIC) technique was used to measure the full-field deformation of Fujian (China) sand in different confining pressures. In addition, microscopic parameters of the rolling resistance linear model in the discrete element method (DEM) were calibrated by using the experimental results, and the experiments were simulated by using DEM. Results show that the new plane stain testing apparatus combined with the 2D-DIC technique can not only obtain the local deformation distribution of Fujian (China) sand but also obtain the asymmetric deformation directly. Furthermore, the calibrated microscopic parameters can truly represent the stress-strain relationship of the tested specimens.

Key words: rock and soil mechanics, full-field deformation measurement, digital image correlation technique, plane strain compression experiment, progressive failure, discrete element method

中图分类号: 

  • TU43
[1] Thomas T. Plastic flow and fracture in solids[J]. Journal of Mathematics and Mechanics, 1958, 7:291-322.
[2] Shao L T, Liu G, Zeng F T, et al. Recognition of the stress-strain curve based on the local deformation measurement of soil specimens in the triaxial test[J]. Geotechnical Testing Journal, 2016, 39(4):658-672.
[3] Zhang X, Li L, Chen G, et al. A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing[J]. Acta Geotechnica, 2014, 10(1):55-82.
[4] 杨智勇, 曹子君, 李典庆, 等. 颗粒接触摩擦系数空间变异性对颗粒流双轴数值试验的影响[J]. 工程力学, 2017, 34(5):235-246. Yang Zhiyong, Cao Zijun, Li Dianqing, et al. Effect of spatially variable friction coefficient of granular materials on its Macro-mechanical behaviors using biaxial compression numerical simulation[J]. Engineering Mechanics, 2017, 34(5):235-246. (in Chinese)
[5] 姜浩, 徐明. 碎石料应力路径大型三轴试验的离散元模拟研究[J]. 工程力学, 2014, 31(10):151-157, 180. Jiang Hao, Xu Ming. Study of stress-pathdependent behavior of rockfills using discrete element method[J]. Engineering Mechanics, 2014, 31(10):151-157, 180. (in Chinese)
[6] Medina-Cetina Z, Rechenmacher A. Influence of boundary conditions, specimen geometry and material heterogeneity on model calibration from triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6):627-643.
[7] Scholey G K, Frost J D, Presti D L, et al. A review of instrumentation for measuring small strains during triaxial testing of soil specimens[J]. Geotechnical Testing Journal, 1995, 18(2):137-156.
[8] 陈超斌, 叶冠林. 基于LVDT的小应变三轴仪研制及其软土试验应用[J]. 岩土力学, 2018, 39(6):2304-2310. Chen Chaobin, Ye Guanlin. Development of small-strain triaxial apparatus using LVDT sensors and its application to soft clay test[J]. Rock and Soil Mechanics, 2018, 39(6):2304-2310. (in Chinese)
[9] Alikarami R, Andò E, Gkiousas-Kapnisis M, et al. Strain localisation and grain breakage in sand under shearing at high mean stress:insights from in situ X-ray tomography[J]. Acta Geotechnica, 2014, 10(1):15-30.
[10] 姚志华, 陈正汉, 李加贵, 等. 基于CT技术的原状黄土细观结构动态演化特征[J]. 农业工程学报, 2017, 33(13):134-142. Yao Zhihua, Chen Zhenghan, Li Jiangui, et al. Meso-structure dynamic evolution characteristic of undisturbed loess based on CT technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(13):134-142. (in Chinese)
[11] Cheng Z, Wang J. Quantification of the strain field of sands based on X-ray micro-tomography:A comparison between a grid-based method and a mesh-based method[J]. Powder Technology, 2019, 344:314-334.
[12] 周健, 史旦达, 吴峰, 等. 基于数字图像技术的砂土液化可视化动三轴试验研究[J]. 岩土工程学报, 2011, 33(1):81-87. Zhou Jian, Shi Danda, Wu Feng, et al. Visualized cyclic triaxial tests on sand liquefaction using digital imaging technique[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):81-87. (in Chinese)
[13] Mousa A. Revisiting the Calibration Philosophy of Constitutive Models in Geomechanics[J]. International Journal of Geomechanics, 2017, 17(8):06017002.
[14] Sun L, Abolhasannejad V, Gao L, et al. Non-contact optical sensing of asphalt mixture deformation using 3D stereo vision[J]. Measurement, 2016, 85:100-117.
[15] Li L, Zhang X. Factors influencing the accuracy of the photogrammetry-based deformation measurement method[J]. Acta Geotechnica, 2019, 14(2):559-574.
[16] Sutton M, Wolters W, Peters W, et al. Determination of displacements using an improved digital correlation method[J]. Image and Vision Computing, 1983, 1(3):133-139.
[17] Pan B, Dafang W, Yong X. Incremental calculation for large deformation measurement using reliability-guided digital image correlation[J]. Optics and Lasers in Engineering, 2012, 50(4):586-592.
[18] Keane R D, Adrian R J. Theory of cross-correlation analysis of PIV images[J]. Applied scientific research, 1992, 49(3):191-215.
[19] Tang Y, Okubo S, Xu J, et al. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation[J]. Engineering Geology, 2019, 249(31):172-185.
[20] 王学滨, 杜亚志, 潘一山, 等. 基于数字图像相关方法的等应变率下不同含水率砂样剪切带观测[J]. 岩土力学, 2015, 36(3):625-632. Wang Xuebin, Du Yazhi, Pan Yishan, et al. Measurement of shear bands of sand specimens with different water contents under constant strain rate based on digital image correlation method[J]. Rock and Soil Mechanics, 2015, 36(3):625-632. (in Chinese)
[21] Yang C, Wei J, Huang H, et al. Application of 3D-DIC to characterize the effect of aggregate size and volume on non-uniform shrinkage strain distribution in concrete[J]. Cement and Concrete Composites, 2018, 86:178-189.
[22] 赵燕茹, 王磊, 韩霄峰, 等. 冻融条件下玄武岩纤维混凝土断裂韧度研究[J]. 工程力学, 2017, 34(9):92-101. Zhao Yanru, Wang Lei, Han Xiaofeng, et al. Fracture toughness of basalt-fiber reinforced concrete subjected to cyclic freezing and thawing[J]. Engineering Mechanics, 2017, 34(9):92-101. (in Chinese)
[23] 肖军华, 张德, 王延海, 等. 基于DEM-FDM耦合的普通铁路碎石道床-土质基床界面接触应力分析[J]. 工程力学, 2018, 35(9):170-179. Xiao Junhua, Zhange De, Wang Yanhai, et al. Study on interface stress between ballast and subgrade for traditional railway based on coupled DEM-FDM[J]. Engineering Mechanics, 2018, 35(9):170-179. (in Chinese)
[24] 胡光辉, 徐涛, 陈崇枫, 等. 基于离散元法的脆性岩石细观蠕变失稳研究[J]. 工程力学, 2018, 35(9):26-36. Hu Guanghui, Xu Tao, Chen Chongfeng, et al. A microscopic study of creep and fracturing of brittle rocks based on discrete element method[J]. Engineering Mechanics, 2018, 35(9):26-36. (in Chinese)
[25] Zhang F, Li M, Ming P, et al. Three-dimensional DEM modeling of the stress-strain behavior for the gap-graded soils subjected to internal erosion[J]. Acta Geotechnica, 2019, 14(2):487-503.
[26] 唐欣薇, 黄文敏, 周元德, 等. 华南风化花岗岩劈拉断裂行为的试验与细观模拟研究[J]. 工程力学, 2017, 34(6):246-256. Tang Xinwei, Huang Wenmin, Zhou Yuande, et al. Experimental and meso-scale numerical modeling of splitting tensile behavior of weathered granites from south China[J]. Engineering Mechanics, 2017, 34(6):246-256. (in Chinese)
[27] Pan B, Qian K, Xie H, et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement:a review[J]. Measurement Science and Technology, 2009, 20(6):062001.
[28] Pan B, Xie H, Wang Z. Equivalence of digital image correlation criteria for pattern matching[J]. Applied Optics, 2010, 49(28):5501-5509.
[29] Jiang M, Yu H, Harris D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5):340-357.
[30] Wang Y, Leung S. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1):29-44.
[31] 蒋明镜, 张望城, 孙渝刚, 等. 理想胶结砂土力学特性及剪切带形成的离散元分析[J]. 岩土工程学报, 2012, 34(12):2162-2169. Jiang Mingjing, Zhang Wangcheng, Sun Yugang, et al. Mechanical behavior and shear band formation in idealized cemented sands by DEM[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12):2162-2169. (in Chinese)
[1] 马康, 程晓辉. 孔隙固体超弹性本构模型与应用[J]. 工程力学, 2019, 36(7): 248-256.
[2] 周茗如, 卢国文, 王腾, 王晋伟. 结构性黄土劈裂注浆力学机理分析[J]. 工程力学, 2019, 36(3): 169-181.
[3] 孟凡净, 刘焜, 吴华伟. 颗粒流润滑剪切膨胀的力学机制研究[J]. 工程力学, 2018, 35(8): 236-244.
[4] 姚仰平, 田雨, 刘林. 三维各向异性砂土UH模型[J]. 工程力学, 2018, 35(3): 49-55.
[5] 顾祥林, 付武荣, 汪小林, 洪丽. 混凝土材料与结构破坏过程模拟分析[J]. 工程力学, 2015, 32(11): 9-17.
[6] 井国庆,王子杰,施晓毅. 多围压下三轴压缩试验与不可破裂颗粒离散元法分析[J]. 工程力学, 2015, 32(10): 82-88.
[7] 王军祥, 姜谙男. 完全隐式返回映射算法对岩土地基问题的求解[J]. 工程力学, 2013, 30(8): 83-89.
[8] 辛克贵;何铭华. 分布粘聚元的系统理论研究[J]. 工程力学, 2011, 28(增刊Ⅱ): 109-128.
[9] 侯 健. 考虑块体间碰撞作用的混凝土框架结构空间倒塌反应分析[J]. 工程力学, 2010, 27(6): 89-097.
[10] 张志增;李仲奎;程丽娟. 基于主从式并行遗传算法的岩土力学参数反分析方法[J]. 工程力学, 2010, 27(10): 21-026.
[11] 李增志;别社安;任增金. 抛石防波堤稳定性的离散单元法分析[J]. 工程力学, 2009, 26(增刊 I): 111-114.
[12] 荣传新;王秀喜;程 桦. 深厚冲积层冻结壁和井壁共同作用机理研究[J]. 工程力学, 2009, 26(3): 235-239.
[13] 金伟良;方韬. 钢筋混凝土框架结构破坏性能的离散单元法模拟[J]. 工程力学, 2005, 22(4): 67-73.
[14] 黄茂松;钱建固. 平面应变条件下饱和土体分叉后的力学性状[J]. 工程力学, 2005, 22(1): 48-53.
[15] 赵桂平;赵锺斗. 基于改进弧长法的层压复合壳后屈曲反应分析[J]. 工程力学, 2003, 20(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴方伯;黄海林;陈伟;周绪红;. 肋上开孔对预制预应力混凝土带肋薄板施工阶段挠度计算方法的影响研究[J]. 工程力学, 2011, 28(11): 64 -071 .
[2] 李宗利;杜守来. 高渗透孔隙水压对混凝土力学性能的影响试验研究[J]. 工程力学, 2011, 28(11): 72 -077 .
[3] 姜亚洲;任青文;吴晶;杜小凯. 基于双重非线性的混凝土坝极限承载力研究[J]. 工程力学, 2011, 28(11): 83 -088 .
[4] 于琦;孟少平;吴京;郑开启. 预应力混凝土结构组合式非线性分析模型[J]. 工程力学, 2011, 28(11): 130 -137 .
[5] 张慕宇;杨智春;王乐;丁燕. 复合材料梁结构损伤定位的无参考点互相关分析方法[J]. 工程力学, 2011, 28(11): 166 -169 .
[6] 胡小荣;俞茂宏. 材料三剪屈服准则研究[J]. 工程力学, 2006, 23(4): 6 -11 .
[7] 李宏男;杨浩. 基于多分支BP神经网络的结构系统辨识[J]. 工程力学, 2006, 23(2): 23 -28,4 .
[8] 李艺;赵文;张延年. 系统刚度可靠性分析的加速算法[J]. 工程力学, 2006, 23(3): 17 -20 .
[9] 史宝军;袁明武;宋世军. 流体力学问题基于核重构思想的最小二乘配点法[J]. 工程力学, 2006, 23(4): 17 -21,3 .
[10] 熊渊博;龙述尧;胡德安. 薄板屈曲分析的局部Petrov-Galerkin方法[J]. 工程力学, 2006, 23(1): 23 -27 .
X

近日,本刊多次接到来电,称有不法网站冒充《工程力学》杂志官网,并向投稿人收取高额费用。在此,我们郑重申明:

1.《工程力学》官方网站是本刊唯一的投稿渠道(原网站已停用),《工程力学》所有刊载论文必须经本刊官方网站的在线投稿审稿系统完成评审。我们不接受邮件投稿,也不通过任何中介或编辑收费组稿。

2.《工程力学》在稿件符合投稿条件并接收后会发出接收通知,请作者在接到版面费或审稿费通知时,仔细检查收款人是否为“《工程力学》杂志社”,千万不要汇款给任何的个人账号。请广大读者、作者相互转告,广为宣传!如有疑问,请来电咨询:010-62788648。

感谢大家多年来对《工程力学》的支持与厚爱,欢迎继续关注我们!

《工程力学》杂志社

2018年11月15日